OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11867–11872

High-gain, wide-dynamic-range parametric interaction in Mg-doped LiNbO3 quasi-phase-matched adhered ridge waveguide

Rai Kou, Sunao Kurimura, Kiyofumi Kikuchi, Akihiro Terasaki, Hirochika Nakajima, Katsutoshi Kondou, and Junichiro Ichikawa  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11867-11872 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (976 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With recent developments and optimizations for quasi-phase-matched adhered ridge waveguide (QPM-ARW), outstanding performances containing efficient amplification were demonstrated by difference frequency generation (DFG) and optical parametric amplification (OPA). A maximum channel conversion efficiency of +7.6 dB (570%) was achieved in a telecommunication band using a 50 mm-long device, when coupling with 160 mW pump. Simultaneously, the input signal was amplified up to +9.5 dB (890%).

© 2011 OSA

OCIS Codes
(160.3730) Materials : Lithium niobate
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Optical Devices

Original Manuscript: April 11, 2011
Revised Manuscript: May 21, 2011
Manuscript Accepted: May 22, 2011
Published: June 3, 2011

Rai Kou, Sunao Kurimura, Kiyofumi Kikuchi, Akihiro Terasaki, Hirochika Nakajima, Katsutoshi Kondou, and Junichiro Ichikawa, "High-gain, wide-dynamic-range parametric interaction in Mg-doped LiNbO3 quasi-phase-matched adhered ridge waveguide," Opt. Express 19, 11867-11872 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003). [CrossRef]
  2. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007). [CrossRef]
  3. M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett. 89(1), 011101 (2006). [CrossRef]
  4. T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004). [CrossRef]
  5. V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007). [CrossRef] [PubMed]
  6. V. G. Ta’eed, M. D. Pelusi, B. J. Eggleton, D. Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Express 15(23), 15047–15052 (2007). [CrossRef] [PubMed]
  7. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000). [CrossRef]
  8. C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997). [CrossRef]
  9. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006). [CrossRef]
  10. C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions 1.5-μm by difference-frequency-generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993). [CrossRef]
  11. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999). [CrossRef]
  12. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002). [CrossRef]
  13. Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical, channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003). [CrossRef]
  14. T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer-Verlag, Berlin, 2003).
  15. C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. H. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008). [CrossRef] [PubMed]
  16. L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008). [CrossRef]
  17. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) Coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010). [CrossRef]
  18. T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Top. Quantum Electron. 13(1), 79–91 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited