OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12131–12140

Design and analysis of single mode Fabry-Perot lasers with high speed modulation capability

Yu Li, Yanping Xi, Xun Li, and Wei-Ping Huang  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12131-12140 (2011)
http://dx.doi.org/10.1364/OE.19.012131


View Full Text Article

Enhanced HTML    Acrobat PDF (1510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The single mode Fabry-Perot (FP) semiconductor lasers are investigated systematically by a rigorous time-domain theoretical model based on the transfer matrix method. Static and high-speed dynamic performances under direct modulation and strong external optical feedbacks are simulated for both symmetric and asymmetric longitudinal structures of the lasers. Comparisons with the DFB and conventional FP lasers are made to confirm its effectiveness in achieving single-mode lasing with high spectrum purity under modulation and feedback conditions. Structural optimization is also carried out with respect to the key design parameters.

© 2011 OSA

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 15, 2011
Revised Manuscript: May 18, 2011
Manuscript Accepted: May 25, 2011
Published: June 8, 2011

Citation
Yu Li, Yanping Xi, Xun Li, and Wei-Ping Huang, "Design and analysis of single mode Fabry-Perot lasers with high speed modulation capability," Opt. Express 19, 12131-12140 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. O’Brien and E. P. O’Reilly, “Theory of improved spectral purity in index patterned Fabry-Perot lasers,” Appl. Phys. Lett. 86, 201101 (2005). [CrossRef]
  2. J. S. Young, D. A. Kozlowski, J. M. C. England, and R. G. S. Plumb, “Spectral perturbation and mode suppression in 1.3μm Fabry-Perot lasers,” Electron. Lett. 31(4), 290–291 (1995). [CrossRef]
  3. B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3μm Fabry-Perot laser by modal perturbation,” Electron. Lett. 31(25), 2181–2182 (1995). [CrossRef]
  4. S. O’Brien, A. Amann, R. Fehse, S. Osborne, E. P. O’Reilly, and J. M. Rondinelli, “Spectral manipulation in Fabry-Perot lasers: perturbative inverse scattering approach,” J. Opt. Soc. Am. B 23, 1046–1056 (2006). [CrossRef]
  5. Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006). [CrossRef]
  6. D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Y. Q. Lu, B. Corbett, B. Roycroft, J. O'Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009). [CrossRef]
  7. G. Adolfsson, J. Bengtsson, and A. Larsson, “Spectral engineering of semiconductor Fabry-Perot laser cavities in the weakly and strongly perturbed regimes,” J. Opt. Soc. Am. B 27(1), 118–127 (2010). [CrossRef]
  8. C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009). [CrossRef]
  9. L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994). [CrossRef]
  10. D. D. Marcenac and J. E. Carroll, “Quantum-mechanical model for realistic Fabry-Perot lasers,” IEE Proc. J. 140, 157–171 (1993).
  11. D. A. Kozlowski, J. S. Young, R. G. S. Plumb, and J. M. C. England, “Time-domain modeling of mode suppression in 1.3-μm Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 8(6), 755–757 (1996). [CrossRef]
  12. M. G. Davis and R. F. O’Dowd, “A new large-signal dynamic model for multielectrode DFB lasers based on the transfer matrix method,” IEEE Photon. Technol. Lett. 4(8), 838–840 (1992). [CrossRef]
  13. O. A. Lavrova and D. J. Blumenthal, “Detailed transfer matrix method-based dynamic model for multisection widely tunable GCSR lasers,” J. Lightwave Technol. 18(9), 1274–1283 (2000). [CrossRef]
  14. W. Li, X. Li, and W. P. Huang, “A traveling-wave model of laser diodes with consideration for thermal effects,” Opt. Quantum Electron. 36(8), 709–724 (2004). [CrossRef]
  15. M. Homar, J. V. Moloney, and M. S. Miguel, “Traveling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations,” IEEE J. Quantum Electron. 32(3), 553–566 (1996). [CrossRef]
  16. D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995). [CrossRef]
  17. Y. P. Xi, X. Li, and W. P. Huang, “Time-domain standing-wave approach based on cold cavity modes for simulation of DFB lasers,” IEEE J. Quantum Electron. 44(10), 931–937 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited