OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12241–12247

Hot electron dominated rapid transverse ionization growth in liquid water

Michael S. Brown, Thomas Erickson, Kyle Frische, and William M. Roquemore  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12241-12247 (2011)
http://dx.doi.org/10.1364/OE.19.012241


View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Pump/probe optical-transmission measurements are used to monitor in space and time the ionization of a liquid column of water following impact of an 800-nm, 45-fs pump pulse. The pump pulse strikes the 53-μm-diameter column normal to its axis with intensities up to 2 × 1015 W/cm2. After the initial photoinization and for probe delay times < 500 fs, the neutral water surrounding the beam is rapidly ionized in the transverse direction, presumably by hot electrons with initial velocities of 0.55 times the speed of light (relativistic kinetic energy of ~100 keV). Such velocities are unusual for condensed-matter excitation at the stated laser intensities.

© 2011 OSA

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(350.5400) Other areas of optics : Plasmas

ToC Category:
Ultrafast Optics

History
Original Manuscript: February 15, 2011
Revised Manuscript: May 27, 2011
Manuscript Accepted: June 4, 2011
Published: June 9, 2011

Citation
Michael S. Brown, Thomas Erickson, Kyle Frische, and William M. Roquemore, "Hot electron dominated rapid transverse ionization growth in liquid water," Opt. Express 19, 12241-12247 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12241


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College Press, 2007), Chap. 2.
  2. Ch. Reich, P. Gibbon, I. Uschmann, and E. Forster, “Yield optimization and time structure of femtosecond laser plasma kalpha sources,” Phys. Rev. Lett. 84(21), 4846–4849 (2000). [CrossRef] [PubMed]
  3. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007). [CrossRef] [PubMed]
  4. C. Schaffer, N. Nishimura, E. Glezer, A. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002). [PubMed]
  5. S. Minardi, A. Gopal, M. Tatarakis, A. Couairon, G. Tamosauskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Time-resolved refractive index and absorption mapping of light-plasma filaments in water,” Opt. Lett. 33(1), 86–88 (2008). [CrossRef]
  6. http://www.newport.com/The-Effect-of-Dispersion-on-Ultrashort-Pulses/602091/1033/content.aspx
  7. P. W. Barber, and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1998), Chap. 2.
  8. R. del Coso and J. Solis, “Relation between nonlinear refractive index and third-order susceptibility in absorbing media,” J. Opt. Soc. Am. B 21(3), 640–644 (2004). [CrossRef]
  9. C. Schaffer, Ph.D. thesis, “Interaction of femtosecond laser pulses with transparent materials,” Harvard University (2001).
  10. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999). [CrossRef]
  11. I. H. Hutchinson, Principles of Plasma Diagnostics (Cambridge University Press, 2002), Chap. 5.
  12. See, for example, P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College Press, 2007), p. 174.
  13. Y. T. Li, J. Zhang, Z. M. Sheng, H. Teng, T. J. Liang, X. Y. Peng, X. Lu, Y. J. Li, and X. W. Tang, “Spatial distribution of high-energy electron emission from water plasmas produced by femtosecond laser pulses,” Phys. Rev. Lett. 90(16), 165002 (2003). [CrossRef] [PubMed]
  14. V. Sazegari, M. Mirzaie, and B. Shokri, “Ponderomotive acceleration of electrons in the interaction of arbitrarily polarized laser pulse with tenuous plasma,” Phys. Plasmas 13, 033102 (2006). [CrossRef]
  15. The measured transmitted light includes residual 800 nm light and contributions from incident light that was spectrally blue-shifted.
  16. C. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3 to 12.4 eV,” J. Chem. Phys. 125, 044515 (2006). [CrossRef]
  17. W. Theobald, R. Haßner, R. Kingham, R. Sauerbrey, R. Fehr, D. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, “Electron densities temperatures and the dielectric function of femtosecond-laser-produced plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3544–3553 (1999). [CrossRef]
  18. H. Date, K. L. Sutherland, H. Hasegawa, and M. Shimozuma, “Ionization and excitation collision processes of electrons in liquid water,” Nucl. Instrum. Methods Phys. Res. B 265(2), 515–520 (2007). [CrossRef]
  19. R. D. Stewart, W. E. Wilson, J. C. McDonald, and D. J. Strom, “Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system,” Phys. Med. Biol. 47(1), 79–88 (2002). [CrossRef] [PubMed]
  20. H. Gumu, “Simple stopping power formula for low and intermediate energy electrons,” Radiat. Phys. Chem. 72(1), 7–12 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited