OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12356–12364

High resolution on-chip spectroscopy based on miniaturized microdonut resonators

Zhixuan Xia, Ali Asghar Eftekhar, Mohammad Soltani, Babak Momeni, Qing Li, Maysamreza Chamanzar, Siva Yegnanarayanan, and Ali Adibi  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12356-12364 (2011)
http://dx.doi.org/10.1364/OE.19.012356


View Full Text Article

Enhanced HTML    Acrobat PDF (1081 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate a high resolution integrated spectrometer on silicon on insulator (SOI) substrate using a large-scale array of microdonut resonators. Through top-view imaging and processing, the measured spectral response of the spectrometer shows a linewidth of ~0.6 nm with an operating bandwidth of ~50 nm. This high resolution and bandwidth is achieved in a compact size using miniaturized microdonut resonators (radius ~2μm) with a high quality factor, single-mode operation, and a large free spectral range. The microspectrometer is realized using silicon process compatible fabrication and has a great potential as a high-resolution, large dynamic range, light-weight, compact, high-speed, and versatile microspectrometer.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Integrated Optics

History
Original Manuscript: March 4, 2011
Revised Manuscript: April 11, 2011
Manuscript Accepted: May 4, 2011
Published: June 10, 2011

Citation
Zhixuan Xia, Ali Asghar Eftekhar, Mohammad Soltani, Babak Momeni, Qing Li, Maysamreza Chamanzar, Siva Yegnanarayanan, and Ali Adibi, "High resolution on-chip spectroscopy based on miniaturized microdonut resonators," Opt. Express 19, 12356-12364 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12356


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Hubner, A. M. Jorgensen, T. A. Anhoj, and D. A. Zauner, “Integrated optical systems for lab-on-chip applications,” Proc. SPIE 5728, 269–277 (2005). [CrossRef]
  2. J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Anal. Bioanal. Chem. 389(4), 1193–1199 (2007). [CrossRef] [PubMed]
  3. B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009). [CrossRef]
  4. T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), L673–L675 (2004). [CrossRef]
  5. K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008). [CrossRef]
  6. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004). [CrossRef]
  7. J. Song and N. Zhu, “Design and fabrication of compact etched diffraction grating demultiplexers based on α-Si nanowire technology,” Electron. Lett. 44(13), 816–818 (2008). [CrossRef]
  8. F. Horst, W. M. J. Green, B. J. Offrein, and Y. Vlasov, “Echelle grating WDM demultiplexers in SOI technology, based on a design with two stigmatic points,” Proc. SPIE 6996, 69960R, 69960R-8 (2008). [CrossRef]
  9. B. Momeni, M. Chamanzar, E. Shah Hosseini, M. Askari, M. Soltani, and A. Adibi, “Strong angular dispersion using higher bands of planar silicon photonic crystals,” Opt. Express 16(18), 14213–14220 (2008). [CrossRef] [PubMed]
  10. B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009). [CrossRef]
  11. B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18(1), 102–107 (2010). [CrossRef] [PubMed]
  12. R. F. Wolffenbuttel, “State-of-the-Art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004). [CrossRef]
  13. S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32(6), 632–634 (2007). [CrossRef] [PubMed]
  14. R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express 17(19), 16632–16645 (2009). [CrossRef] [PubMed]
  15. M. Soltani, Q. Li, S. Yegnanarayanan, B. Momeni, A. A. Eftekhar, and A. Adibi, “Large-scale array of small high-Q microdisk resonators for on-chip spectral analysis,” in Proceedings of IEEE LEOS Annual Meeting Conference (Institute of Electrical and Electronics Engineers, Belek-Antalya, Turkey, 2009), pp. 703–704.
  16. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express 18(19), 19541–19557 (2010). [CrossRef] [PubMed]
  17. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008). [CrossRef] [PubMed]
  18. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a silicon-on- insulator platform,” Opt. Express 17(4), 2247–2254 (2009). [CrossRef] [PubMed]
  19. J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008). [CrossRef] [PubMed]
  20. C. W. Holzwarth, T. Barwicz, M. A. Popovic, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Accurate resonant frequency spacing of microring filters without postfabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006). [CrossRef]
  21. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010). [CrossRef]
  22. D. K. Sparacin, C. Y. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K. Gleason, “Trimming of microring resonators by photooxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett. 30(17), 2251–2253 (2005). [CrossRef] [PubMed]
  23. C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010). [CrossRef]
  24. C.-C. Chang and H.-N. Lee, “On the estimation of target spectrum for filter-array based spectrometers,” Opt. Express 16(2), 1056–1061 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited