OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12418–12426

Fiber-tip micro-cavity for temperature and transverse load sensing

Jun Ma, Jian Ju, Long Jin, Wei Jin, and Dongning Wang  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12418-12426 (2011)
http://dx.doi.org/10.1364/OE.19.012418


View Full Text Article

Enhanced HTML    Acrobat PDF (1278 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A low cost fiber-optic micro-cavity interferometric sensor is presented. The micro-cavity is fabricated at the fiber tip by splicing a silica capillary to a single mode fiber and then heating/melting the capillary to form a microsphere with an internal air cavity. Applications of the micro-cavity sensor for temperature and traverse load measurements are demonstrated. The sensor has small size and good mechanical strength, and may be used in high temperature environment.

© 2011 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Sensors

History
Original Manuscript: January 13, 2011
Revised Manuscript: March 9, 2011
Manuscript Accepted: March 21, 2011
Published: June 13, 2011

Citation
Jun Ma, Jian Ju, Long Jin, Wei Jin, and Dongning Wang, "Fiber-tip micro-cavity for temperature and transverse load sensing," Opt. Express 19, 12418-12426 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12418


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006). [CrossRef]
  2. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996). [CrossRef]
  3. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008). [CrossRef] [PubMed]
  4. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, “In-line fiber etalon for strain measurement,” Opt. Lett. 18(22), 1973–1975 (1993). [CrossRef] [PubMed]
  5. Y. J. Rao, M. Deng, T. Zhu, and H. Li, “In-line Fabry-Perot etalons based on hollow-core photonic bandgap fibers for high-temperature applications,” J. Lightwave Technol. 27(19), 4360–4365 (2009). [CrossRef]
  6. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007). [CrossRef] [PubMed]
  7. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008). [CrossRef] [PubMed]
  8. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009). [CrossRef] [PubMed]
  9. Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005). [CrossRef]
  10. V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, “Thermo-refractive noise in gravitational wave antennae,” Phys. Lett. A 271(5-6), 303–307 (2000). [CrossRef]
  11. Y. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, “High-temperature fiber-tip pressure sensor,” J. Lightwave Technol. 24(2), 861–869 (2006). [CrossRef]
  12. M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24(16), 1091–1093 (1999). [CrossRef]
  13. M. Silva-Lopez, C. Li, W. N. MacPherson, A. J. Moore, J. S. Barton, J. D. Jones, D. Zhao, L. Zhang, and I. Bennion, “Differential birefringence in Bragg gratings in multicore fiber under transverse stress,” Opt. Lett. 29(19), 2225–2227 (2004). [CrossRef] [PubMed]
  14. C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Opt. Lett. 31(15), 2260–2262 (2006). [CrossRef] [PubMed]
  15. T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009). [CrossRef]
  16. Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35(8), 661–663 (2002). [CrossRef]
  17. J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited