OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12503–12508

Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription

Chao Zhang, Ningning Dong, Jin Yang, Feng Chen, Javier R. Vázquez de Aldana, and Qingming Lu  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12503-12508 (2011)
http://dx.doi.org/10.1364/OE.19.012503


View Full Text Article

Enhanced HTML    Acrobat PDF (1054 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Buried channel waveguides have been fabricated in Nd:GGG crystals by using the femtosecond laser inscription. The waveguides are confined between two filaments with propagation losses of 2.0 dB/cm. Stable continuous wave laser oscillation at ~1061 nm has been demonstrated at room temperature. Under 808 nm optical excitation, a pump threshold of 29 mW and a slope efficiency of 25% have been obtained.

© 2011 OSA

OCIS Codes
(230.7380) Optical devices : Waveguides, channeled
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Laser Microfabrication

History
Original Manuscript: May 4, 2011
Revised Manuscript: June 2, 2011
Manuscript Accepted: June 7, 2011
Published: June 13, 2011

Citation
Chao Zhang, Ningning Dong, Jin Yang, Feng Chen, Javier R. Vázquez de Aldana, and Qingming Lu, "Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription," Opt. Express 19, 12503-12508 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12503


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998). [CrossRef]
  2. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007). [CrossRef]
  3. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008). [CrossRef]
  4. Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010). [CrossRef] [PubMed]
  5. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010). [CrossRef]
  6. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010). [CrossRef] [PubMed]
  7. T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011). [CrossRef]
  8. Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97(3), 031119–031121 (2010). [CrossRef]
  9. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010). [CrossRef] [PubMed]
  10. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17(25), 22417–22422 (2009). [CrossRef]
  11. M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007). [CrossRef]
  12. N. V. Baburin, B. I. Galagan, Y. K. Danileiko, N. N. Il’ichev, A. V. Masalov, V. Y. Molchanov, and V. A. Chikov, “Two-frequency mode-locked lasing in a monoblock diode-pumped Nd3+:GGG laser,” IEEE Quant. Electron. 31(4), 303–304 (2001). [CrossRef]
  13. Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth 292(2), 386–390 (2006). [CrossRef]
  14. L. J. Qin, D. Y. Tang, G. Q. Xie, C. M. Dong, Z. T. Jia, and X. T. Tao, “High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal,” Laser Phys. Lett. 5(2), 100–103 (2008). [CrossRef]
  15. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008). [CrossRef]
  16. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007). [CrossRef]
  17. S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion-implanted Nd:GGG channel waveguide laser,” Opt. Lett. 17(1), 52–54 (1992). [CrossRef] [PubMed]
  18. Y. Ren, N. Dong, Y. Tan, J. Guan, F. Chen, and Q. Lu, “Continuous Wave Laser Generation in Proton Implanted Nd:GGG Planar Waveguides,” J. Lightwave Technol. 28, 3578–3581 (2010).
  19. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]
  20. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101, 05111–05114 (2009). [CrossRef]
  21. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009). [CrossRef]
  22. F. Fusari, R. R. Thomson, G. Jose, F. M. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Jha, W. Sibbett, and C. T. A. Brown, “Lasing action at around 1.9 μm from an ultrafast laser inscribed Tm-doped glass waveguide,” Opt. Lett. 36(9), 1566–1568 (2011). [CrossRef] [PubMed]
  23. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  24. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985). [CrossRef]
  25. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009). [CrossRef]
  26. J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006). [CrossRef]
  27. I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14(3), 423–428 (1996). [CrossRef]
  28. G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express 15(20), 13266–13271 (2007). [CrossRef] [PubMed]
  29. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003). [CrossRef] [PubMed]
  30. D. Jaque, U. Caldiño, J. J. Romero, and J. García Solé, “Influence of Nd concentration on continuous wave laser properties of Ca3Ga2Ge3O12:Nd3+ laser garnet crystal,” J. Appl. Phys. 86, 6617–6623 (1999). [CrossRef]
  31. J. J. Romero, D. Jaque, U. Caldiño, G. Boulon, Y. Guyot, and J. García Solé, “Stimulated emission, excited state absorption and laser performance optimization of the Nd3+: Ca3Ga2Ge3O12 laser system,” J. Appl. Phys. 91, 1754–1760 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited