OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12619–12627

Stand-up magnetic metamaterials at terahertz frequencies

Kebin Fan, Andrew C. Strikwerda, Hu Tao, Xin Zhang, and Richard D. Averitt  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12619-12627 (2011)
http://dx.doi.org/10.1364/OE.19.012619


View Full Text Article

Acrobat PDF (1992 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed study of non-planar or ‘stand-up’ split ring resonators operating at terahertz frequencies. Based on a facile multilayer electroplating fabrication, this technique can create large area split ring resonators on both rigid substrates and conformally compliant structures. In agreement with simulation results, the characterization of these metamaterials shows a strong response induced purely by the magnetic field. The retrieved parameters also exhibit negative permeability values over a broad frequency span. The extracted parameters exhibit bianisotropy due to the symmetry breaking of the substrate, and this effect is investigated for both single and broad side coupled split rings. Our 3D metamaterial examples pave the way towards numerous potential applications in the terahertz region of the spectrum.

© 2011 OSA

OCIS Codes
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Metamaterials

History
Original Manuscript: April 29, 2011
Revised Manuscript: May 26, 2011
Manuscript Accepted: May 27, 2011
Published: June 14, 2011

Citation
Kebin Fan, Andrew C. Strikwerda, Hu Tao, Xin Zhang, and Richard D. Averitt, "Stand-up magnetic metamaterials at terahertz frequencies," Opt. Express 19, 12619-12627 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12619


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]
  3. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial exhibiting negative refractive index,” Nature 455, 376–380 (2008). [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  5. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009). [CrossRef] [PubMed]
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef] [PubMed]
  7. H. Tao, N. I. landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008). [CrossRef] [PubMed]
  8. W. Wu, Z. Yu, S. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, “Midinfrared metamaterials fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90, 063107 (2007). [CrossRef]
  9. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008). [CrossRef]
  10. C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17, 2547–2549 (2005). [CrossRef]
  11. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, G. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Metamaterials: micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. 22, 5053–5057 (2010). [CrossRef] [PubMed]
  12. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008). [CrossRef] [PubMed]
  13. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009). [CrossRef] [PubMed]
  14. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010). [CrossRef] [PubMed]
  15. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2003) [CrossRef]
  16. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006). [CrossRef] [PubMed]
  17. H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007). [CrossRef] [PubMed]
  18. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007). [CrossRef]
  19. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16, 6736–6744 (2008). [CrossRef] [PubMed]
  20. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication and charaterization,” Phys. Rev. B 78, 241103 (2008). [CrossRef]
  21. X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin film substrates: design, fabrication, and characterization at terahertz frequency,” Appl. Phy. Lett. 96, 011906 (2010). [CrossRef]
  22. M. Choi, S. H. Lee, T. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Kang, Y. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011). [CrossRef] [PubMed]
  23. S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009). [CrossRef] [PubMed]
  24. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 14701 (2009). [CrossRef]
  25. B. Lochel, A. Maciossek, H. J. Quenzer, B. Wagner, and G. Engelmann, “Magnetically driven microstructures fabricated with multilayer electroplating,” Sen. Actuators A 46, 98–103 (1995). [CrossRef]
  26. J.-B. Yoon, B.-I. Kim, Y.-S. Choi, and E. Yoon, “3-D construction of monolithic passive components for RF and microwave ICs using thick-metal surface micromachining technology,” IEEE Trans. Microwave Theory Tech. 51, 279–288 (2003). [CrossRef]
  27. D. A. Powell and Y. S. Kivshar, “Substrate-induced bianisotropy in metamaterials,” Appl. Phys. Lett. 97, 091106 (2010). [CrossRef]
  28. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]
  29. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002). [CrossRef]
  30. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41, 232004 (2008). [CrossRef]
  31. R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18, 14553–14567 (2010). [CrossRef] [PubMed]
  32. D. R. Smith, “Analytic expressions for the constitutive parameters of magnetoelectric metamaterials,” Phys. Rev. E 81, 036605 (2010). [CrossRef]
  33. R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design - theory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited