OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12750–12758

Electro-optic polymer spatial light modulator based on a Fabry–Perot interferometer configuration

Charles Greenlee, J. Luo, K. Leedy, B. Bayraktaroglu, R. A. Norwood, M. Fallahi, A. K.-Y. Jen, and N. Peyghambarian  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12750-12758 (2011)
http://dx.doi.org/10.1364/OE.19.012750


View Full Text Article

Enhanced HTML    Acrobat PDF (1531 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A spatial light modulator (SLM) based on a Fabry-Perot interferometer configuration has been fabricated and tested. The Fabry-Perot spacer layer is a thin film of the SEO100 electro-optic polymer which serves as the nonlinear medium. Measurement results demonstrate the modulation of multiple pixels operating simultaneously at frequencies ranging from 300 kHz to 800 kHz which is significantly faster than SLMs based on liquid crystal and digital micromirror device technology. An average modulation contrast of 50% for all pixels is achieved with a drive voltage of 70 Vrms at 100 kHz. Microwave speeds and CMOS compatibility are feasible with improved transmission line and cavity design.

© 2011 OSA

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.5470) Materials : Polymers
(220.3740) Optical design and fabrication : Lithography
(310.4165) Thin films : Multilayer design
(310.6845) Thin films : Thin film devices and applications
(130.4110) Integrated optics : Modulators

ToC Category:
Optical Devices

History
Original Manuscript: April 28, 2011
Revised Manuscript: June 4, 2011
Manuscript Accepted: June 5, 2011
Published: June 16, 2011

Citation
Charles Greenlee, J. Luo, K. Leedy, B. Bayraktaroglu, R. A. Norwood, M. Fallahi, A. K.-Y. Jen, and N. Peyghambarian, "Electro-optic polymer spatial light modulator based on a Fabry–Perot interferometer configuration," Opt. Express 19, 12750-12758 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12750


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. S. Monaghan, U. Gopinathan, B. M. Hennelly, D. P. Kelly, T. J. Naughton, and J. T. Sheridan, “Applications of spatial light modulators in optical signal processing systems,” Proc. SPIE 5827, 358–368 (2005). [CrossRef]
  2. C. Kohler, X. Schwab, and W. Osten, “Optimally tuned spatial light modulators for digital holography,” Appl. Opt. 45(5), 960–967 (2006). [CrossRef] [PubMed]
  3. S.-H. Zhai, J. Ding, J. Chen, Y.-X. Fan, and H.-T. Wang, “Three-wave shearing interferometer based on spatial light modulator,” Opt. Express 17(2), 970–977 (2009). [CrossRef] [PubMed]
  4. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision,” Opt. Express 12(26), 6403–6409 (2004). [CrossRef] [PubMed]
  5. K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29(2), 699–714 (1993). [CrossRef]
  6. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003). [CrossRef]
  7. B. Noharet, Q. Wang, S. Junique, D. Agren, and S. Almqvist, “Multiple quantum well spatial light modulators for optical signal processing,” Proc. SPIE 5618, 146–155 (2004). [CrossRef]
  8. H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18(1), 214–216 (2006). [CrossRef]
  9. K. A. Bauchert, S. A. Serati, and A. Furman, “Advances in liquid crystal spatial light modulators,” Proc. SPIE 4734, 35–43 (2002). [CrossRef]
  10. H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. Luo, B. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Perot etalon device tunable filters using poled hybrid sol-gel materials,” Appl. Phys. Lett. 89(4), 041127 (2006). [CrossRef]
  11. H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, M. Fallahi, J. Luo, A. K.-Y. Jen, B. Liu, S.-T. Ho, and N. Peyghambarian, “Hybrid Fabry-Perot etalon using an electro-optic polymer for optical modulation,” Appl. Phys. Lett. 89(14), 141113 (2006). [CrossRef]
  12. H. Gan, C. Greenlee, C. Sheng, R. A. Norwood, M. Fallahi, S. Wang, W. Lin, M. Yamamoto, K. Mohanalingam, and N. Peyghambarian, “Near-resonance electro-optic activity enhancement and improved modulation performance for polymer based Fabry-Perot interferometers,” Appl. Phys. Lett. 92(20), 203302 (2008). [CrossRef]
  13. E. Garmire, “Theory of quarter-wave-stack dielectric mirrors used in a thin Fabry-Perot filter,” Appl. Opt. 42(27), 5442–5449 (2003). [CrossRef] [PubMed]
  14. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990). [CrossRef]
  15. C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett. 97(4), 041109 (2010). [CrossRef]
  16. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (3044 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited