OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 12856–12864

Mode-specific directional emission from hybridized particle-on-a-film plasmons

Vladimir D. Miljković, Timur Shegai, Mikael Käll, and Peter Johansson  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 12856-12864 (2011)
http://dx.doi.org/10.1364/OE.19.012856


View Full Text Article

Enhanced HTML    Acrobat PDF (1315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the electromagnetic interaction between a gold nanoparticle and a thin gold film on a glass substrate. The coupling between the particle plasmons and the surface plasmon polaritons of the film leads to the formation of two localized hybrid modes, one low-energy “film-like” plasmon and one high-energy plasmon dominated by the nanoparticle. We find that the two modes have completely different directional scattering patterns on the glass side of the film. The high-energy mode displays a characteristic dipole emission pattern while the low-energy mode sends out a substantial part of its radiation in directions parallel to the particle dipole moment. The relative strength of the two radiation patterns vary strongly with the distance between the particle and the film, as determined by the degree of particle-film hybridization.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 16, 2011
Revised Manuscript: June 9, 2011
Manuscript Accepted: June 10, 2011
Published: June 20, 2011

Citation
Vladimir D. Miljković, Timur Shegai, Mikael Käll, and Peter Johansson, "Mode-specific directional emission from hybridized particle-on-a-film plasmons," Opt. Express 19, 12856-12864 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-12856


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985). [CrossRef]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  4. E. Kretschmann and H. Raether, “Radiative decay of radiative surface plasmons excited by light,” Z. Naturforsch., A 23, 2135–2136 (1968).
  5. P. K. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure—applications to surface enhanced spectroscopy,” Surf. Sci. 124(2-3), 506–528 (1983). [CrossRef]
  6. R. Ruppin, “Surface modes and optical absorption of a small sphere above a substrate,” Surf. Sci. 127(1), 108–118 (1983). [CrossRef]
  7. W. R. Holland and D. G. Hall, “Frequency-shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984). [CrossRef]
  8. R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796–3799 (1991). [CrossRef] [PubMed]
  9. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000). [CrossRef] [PubMed]
  10. P. Johansson, “Light scattering from disordered overlayers of metallic nanoparticles,” Phys. Rev. B 64(16), 165405 (2001). [CrossRef]
  11. T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B 107(38), 10321–10324 (2003). [CrossRef]
  12. P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004). [CrossRef]
  13. F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005). [CrossRef] [PubMed]
  14. G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14(21), 9971–9981 (2006). [CrossRef] [PubMed]
  15. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007). [CrossRef]
  16. J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15(17), 10533–10539 (2007). [CrossRef] [PubMed]
  17. A. Rueda, M. Stemmler, R. Bauer, K. Mullen, Y. Fogel, and M. Kreiter, “Optical resonances of gold nanoparticles on a gold surface: quantitative correlation of geometry and resonance wavelength,” N. J. Phys. 10(11), 113001 (2008). [CrossRef]
  18. J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008). [CrossRef] [PubMed]
  19. M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C 114(16), 7509–7514 (2010). [CrossRef]
  20. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  21. J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009). [CrossRef]
  22. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996). [CrossRef] [PubMed]
  23. T. Kume, S. Hayashi, and K. Yamamoto, “Light emission from surface plasmon polaritons mediated by metallic fine particles,” Phys. Rev. B 55(7), 4774–4782 (1997). [CrossRef]
  24. A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005). [CrossRef]
  25. C. Nylander, B. Liedberg, and T. Lind, “Gas-detection by means of surface-plasmon resonance,” Sens. Actuators 3, 79–88 (1982). [CrossRef]
  26. L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999). [CrossRef]
  27. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000). [CrossRef]
  28. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009). [CrossRef] [PubMed]
  29. T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007). [CrossRef]
  30. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008). [CrossRef] [PubMed]
  31. B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009). [CrossRef] [PubMed]
  32. M. Käll, H. X. Xu, and P. Johansson, “Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy,” J. Raman Spectrosc. 36(6-7), 510–514 (2005). [CrossRef]
  33. J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006). [CrossRef] [PubMed]
  34. W. H. Park, S. H. Ahn, and Z. H. Kim, “Surface-enhanced Raman scattering from a single nanoparticle-plane junction,” ChemPhysChem 9(17), 2491–2494 (2008). [CrossRef] [PubMed]
  35. N. H. Kim, S. J. Lee, and M. Moskovits, “Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification,” Nano Lett. 10(10), 4181–4185 (2010). [CrossRef] [PubMed]
  36. T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates,” ACS Nano 5(3), 2036–2041 (2011). [CrossRef] [PubMed]
  37. P. Johansson, “Electromagnetic Green’s function for layered systems: applications to nanohole interactions in thin metal films,” Phys. Rev. B 83(19), 195408 (2011). [CrossRef]
  38. O. J. F. Martin, A. Dereux, and C. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape,” J. Opt. Soc. Am. A 11(3), 1073–1080 (1994). [CrossRef]
  39. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  40. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited