OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 12925–12936

Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium

Daoxin Dai, Yaocheng Shi, Sailing He, Lech Wosinski, and Lars Thylen  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 12925-12936 (2011)
http://dx.doi.org/10.1364/OE.19.012925


View Full Text Article

Enhanced HTML    Acrobat PDF (1210 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical investigation of a nano-scale hybrid plasmonic waveguide with a low-index as well as high-index gain medium is presented. The present hybrid plasmonic waveguide structure consists of a Si substrate, a buffer layer, a high-index dielectric rib, a low-index cladding, a low-index nano-slot, and an inverted metal rib. Due to the field enhancement in the nano-slot region, a gain enhancement is observed, i.e., the ratio ∂G/∂g >1, where g and G are the gains of the gain medium and the TM fundamental mode of the hybrid plasmonic waveguide, respectively. For a hybrid plasmonic waveguide with a core width of wco=30nm and a slot height of hslot=50nm, the intrinsic loss could be compensated when using a low-index medium with a moderate gain of 176dB/cm. When introducing the high-index gain medium for the hybrid plasmonic waveguide, a higher gain is obtained by choosing a wider core width. For the high-index gain case with hslot=50nm and wco=500nm, a gain of about 200dB/cm also suffices for the compensation of the intrinsic loss.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: April 29, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: June 9, 2011
Published: June 20, 2011

Citation
Daoxin Dai, Yaocheng Shi, Sailing He, Lech Wosinski, and Lars Thylen, "Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium," Opt. Express 19, 12925-12936 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-12925


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005). [CrossRef]
  2. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  3. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003). [CrossRef]
  4. K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13(1), 256–266 (2005). [CrossRef] [PubMed]
  5. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005). [CrossRef]
  6. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30(10), 1186–1188 (2005). [CrossRef] [PubMed]
  7. L. Liu, Z. H. Han, and S. L. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  8. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006). [CrossRef] [PubMed]
  9. G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]
  10. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004). [CrossRef] [PubMed]
  11. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  13. M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009). [CrossRef]
  14. D. X. Dai, L. Yang, and S. H. He, “Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires,” J. Lightwave Technol. 26(6), 704–709 (2008). [CrossRef]
  15. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010). [CrossRef] [PubMed]
  16. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  17. X.-Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides,” Opt. Express 18(18), 18945–18959 (2010). [CrossRef] [PubMed]
  18. Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylen, S. He, and L. Wosinski, “Experimental Realization of a Low-loss Nano-scale Si Hybrid Plasmonic Waveguide,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.
  19. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010). [CrossRef] [PubMed]
  20. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010). [CrossRef] [PubMed]
  21. D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010). [CrossRef] [PubMed]
  22. N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55μ m,” IEEE J. Quantum Electron. 43(6), 479–485 (2007). [CrossRef]
  23. M.-S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express 19(9), 8379–8393 (2011). [CrossRef] [PubMed]
  24. G. Zhou, T. Wang, C. Pan, X. Hui, F. Liu, and Y. Su, “Design of plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement,” P1.2, Group Four Photonics 2010 (Beijing).
  25. S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010). [CrossRef] [PubMed]
  26. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010). [CrossRef] [PubMed]
  27. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010). [CrossRef]
  28. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010). [CrossRef]
  29. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008). [CrossRef] [PubMed]
  30. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008). [CrossRef] [PubMed]
  31. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 mm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886 (1996). [CrossRef]
  32. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009). [CrossRef] [PubMed]
  33. M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004). [CrossRef] [PubMed]
  34. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000). [CrossRef] [PubMed]
  35. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  36. D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007). [CrossRef]
  37. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Gain assisted surface plasmon polariton in quantum wells structures,” Opt. Express 15(1), 176–182 (2007). [CrossRef] [PubMed]
  38. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009). [CrossRef] [PubMed]
  39. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010). [CrossRef] [PubMed]
  40. J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005). [CrossRef] [PubMed]
  41. I. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18(18), 18633–18641 (2010). [CrossRef] [PubMed]
  42. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010). [CrossRef]
  43. I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70(15), 155416 (2004). [CrossRef]
  44. P. Tournoisa and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137(1-3), 41–45 (1997). [CrossRef]
  45. D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12(1), 015002 (2010). [CrossRef]
  46. G. J. Veldhuis, O. Parriaux, H. J. W. M. Hoekstra, and P. V. Lambeck, “Sensitivity enhancement in evanescent optical waveguide sensors,” J. Lightwave Technol. 18(5), 677–682 (2000). [CrossRef]
  47. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited