OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 12984–12991

Inducing vortices in a Bose-Einstein condensate using holographically produced light beams

J. F. S. Brachmann, W. S. Bakr, J. Gillen, A. Peng, and M. Greiner  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 12984-12991 (2011)
http://dx.doi.org/10.1364/OE.19.012984


View Full Text Article

Enhanced HTML    Acrobat PDF (1382 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we demonstrate a technique that can create non-equilibrium vortex configurations with almost arbitrary charge and geometry in a Bose-Einstein condensate. We coherently transfer orbital angular momentum from a holographically generated light beam to a 87Rb condensate using a two-photon stimulated Raman process. Using matter wave interferometry, we verify the phase pattern imprinted onto the atomic wave function for a single vortex and a vortex-antivortex pair. In addition to their phase winding, the vortices created with this technique have an associated hyperfine spin texture.

© 2011 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.4180) Atomic and molecular physics : Multiphoton processes
(050.1380) Diffraction and gratings : Binary optics
(050.1970) Diffraction and gratings : Diffractive optics
(020.1335) Atomic and molecular physics : Atom optics
(020.1475) Atomic and molecular physics : Bose-Einstein condensates
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: April 15, 2011
Revised Manuscript: June 1, 2011
Manuscript Accepted: June 2, 2011
Published: June 21, 2011

Citation
J. F. S. Brachmann, W. S. Bakr, J. Gillen, A. Peng, and M. Greiner, "Inducing vortices in a Bose-Einstein condensate using holographically produced light beams," Opt. Express 19, 12984-12991 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-12984


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef] [PubMed]
  2. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001). [CrossRef]
  3. N. Uribe-Patarroyo, A. Alvarez-Herrero, A. López Ariste, A. Asensio Ramos, T. Belenguer, R. Manso Sainz, C. LeMen, and B. Gelly, “Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations,” Astron. Astrophys. 526, A56 (2011). [CrossRef]
  4. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001). [CrossRef] [PubMed]
  5. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007). [CrossRef]
  6. S. J. van Enk and G. Nienhuis, “Spin and orbital angular momentum of photons,” Europhys. Lett. 25, 497–501 (1994). [CrossRef]
  7. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  8. G. Volpe and D. Petrov, “Torque detection using brownian fluctuations,” Phys. Rev. Lett. 97, 210603 (2006). [CrossRef] [PubMed]
  9. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef] [PubMed]
  10. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003). [CrossRef] [PubMed]
  11. M. F. Andersen, C. Ryu, P. Clade, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006). [CrossRef] [PubMed]
  12. K. C. Wright, L. S. Leslie, and N. P. Bigelow, “Optical control of the internal and external angular momentum of a Bose-Einstein condensate,” Phys. Rev. A 77, 041601 (2008). [CrossRef]
  13. K. C. Wright, L. S. Leslie, A. Hansen, and N. P. Bigelow, “Sculpting the vortex state of a spinor BEC,” Phys. Rev. Lett. 102, 030405 (2009). [CrossRef] [PubMed]
  14. L. S. Leslie, A. Hansen, K. C. Wright, B. M. Deutsch, and N. P. Bigelow, “Creation and detection of skyrmions in a Bose-Einstein condensate,” Phys. Rev. Lett. 103, 250401 (2009). [CrossRef]
  15. G. W. Rayfield and F. Reif, “Evidence for the creation and motion of quantized vortex rings in superfluid helium,” Phys. Rev. Lett. 11, 305–308 (1963). [CrossRef]
  16. J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, “Observation of vortex lattices in Bose-Einstein condensates,” Science 292, 476–479 (2001). [CrossRef] [PubMed]
  17. Y. Shin, M. Saba, M. Vengalattore, T. A. Pasquini, C. Sanner, A. E. Leanhardt, M. Prentiss, D. E. Pritchard, and W. Ketterle, “Dynamical instability of a doubly quantized vortex in a Bose-Einstein condensate,” Phys. Rev. Lett. 93, 160406 (2004). [CrossRef] [PubMed]
  18. B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell, “Vortex precession in Bose-Einstein condensates: Observations with filled and empty cores,” Phys. Rev. Lett. 85, 2857–2860 (2000). [CrossRef] [PubMed]
  19. D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Langin, and D. S. Hall, “Real-time dynamics of single vortex lines and vortex dipoles in a Bose-Einstein condensate,” Science 329, 1182–1185 (2010). [CrossRef] [PubMed]
  20. V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A. Cornell, “Rapidly rotating Bose-Einstein condensates in and near the lowest landau level,” Phys. Rev. Lett. 92, 040404 (2004). [CrossRef] [PubMed]
  21. A. Sorensen, E. Demler, and M. Lukin, “Fractional quantum hall states of atoms in optical lattices,” Phys. Rev. Lett. 94, 86803 (2005). [CrossRef]
  22. N. Gemelke, E. Sarajlic, and S. Chu, “Rotating few-body atomic systems in the fractional quantum hall regime,” ArXiv e-prints, arXiv:1007.2677v1 (2010).
  23. N. R. Cooper, “Rapidly rotating atomic gases,” Adv. Physics 57, 2498–2501 (2008). [CrossRef]
  24. N. R. Cooper, N. K. Wilkin, and J. M. F. Gunn, “Quantum phases of vortices in rotating Bose-Einstein condensates,” Phys. Rev. Lett. 87, 120405 (2001). [CrossRef] [PubMed]
  25. J. M. Kosterlitz and D. J. Thouless, “Ordering, metastability and phase-transitions in 2 dimensional systems,” J. Phys. C 6, 1181–1203 (1973). [CrossRef]
  26. Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and J. Dalibard, “Berezinskii-kosterlitz-thouless crossover in a trapped atomic gas,” Nature 441, 1118–1121 (2006). [CrossRef] [PubMed]
  27. M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, “Vortices in a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 2498–2501 (1999). [CrossRef]
  28. A. E. Leanhardt, A. Görlitz, A. P. Chikkatur, D. Kielpinski, Y. Shin, D. E. Pritchard, and W. Ketterle, “Imprinting vortices in a Bose-Einstein condensate using topological phases,” Phys. Rev. Lett. 89, 190403 (2002).
  29. T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis, and B. P. Anderson, “Observation of vortex dipoles in an oblate Bose-Einstein condensate,” Phys. Rev. Lett. 104, 160401 (2010). [CrossRef] [PubMed]
  30. A. M. Turner, “Mass of a spin vortex in a Bose-Einstein condensate,” Phys. Rev. Lett. 103, 080603 (2009). [CrossRef] [PubMed]
  31. J. Ruostekoski and Z. Dutton, “Engineering vortex rings and systems for controlled studies of vortex interactions in Bose-Einstein condensates,” Phys. Rev. A 72, 063626 (2005). [CrossRef]
  32. U. A. Khawaja and H. T. C. Stoof, “Skyrmions in a ferromagnetic Bose-Einstein condensate,” Nature 411, 918–920 (2001). [CrossRef] [PubMed]
  33. T. H. R. Skyrme, “A non-linear field theory,” Proc. R. Soc. Lond. A 260, 127–138 (1961). [CrossRef]
  34. A. E. Leanhardt, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, “Coreless vortex formation in a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 90, 140403 (2003). [CrossRef] [PubMed]
  35. J. Ruostekoski and J. R. Anglin, “Creating vortex rings and three-dimensional skyrmions in Bose-Einstein condensates,” Phys. Rev. Lett. 86, 3934–3937 (2001). [CrossRef] [PubMed]
  36. J. Tempere and J. T. Devreese, “Fringe pattern of interfering Bose-Einstein condensates with a vortex,” Solid State Communications 108, 993–996 (1998). [CrossRef]
  37. F. Chevy, K. W. Madison, V. Bretin, and J. Dalibard, “Interferometric detection of a single vortex in a dilute Bose-Einstein condensate,” Phys. Rev. A 64, 031601 (2001). [CrossRef]
  38. S. Inouye, S. Gupta, T. Rosenband, A. P. Chikkatur, A. Görlitz, T. L. Gustavson, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, “Observation of vortex phase singularities in Bose-Einstein condensates,” Phys. Rev. Lett. 87, 080402 (2001). [CrossRef] [PubMed]
  39. M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637–641 (1997). [CrossRef] [PubMed]
  40. W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice,” Nature 462, 74–77 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited