OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13008–13019

Cross-correlated (C2) imaging of fiber and waveguide modes

D. N. Schimpf, R. A. Barankov, and S. Ramachandran  »View Author Affiliations

Optics Express, Vol. 19, Issue 14, pp. 13008-13019 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2037 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a method that enables reconstruction of waveguide or fiber modes without assuming any optical properties of the test waveguide. The optical low-coherence interferometric technique accounts for the impact of dispersion on the cross-correlation signal. This approach reveals modal content even at small intermodal delays, thus providing a universally applicable method for determining the modal weights, profiles, relative group-delays and dispersion of all guided or quasi-guided (leaky) modes. Our current implementation allows us to measure delays on a femtosecond time-scale, mode discrimination down to about – 30 dB, and dispersion values as high as 500 ps/nm/km. We expect this technique to be especially useful in testing fundamental mode operation of multi-mode structures, prevalent in high-power fiber lasers.

© 2011 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 3, 2011
Revised Manuscript: June 4, 2011
Manuscript Accepted: June 4, 2011
Published: June 21, 2011

D. N. Schimpf, R. A. Barankov, and S. Ramachandran, "Cross-correlated (C2) imaging of fiber and waveguide modes," Opt. Express 19, 13008-13019 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010). http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-11-B63 [CrossRef]
  2. D. N. Schimpf, J. Limpert, and A. Tünnermann, “Optimization of high performance ultra-fast fiber laser systems to >10GW peak power,” J. Opt. Soc. Am. B 27, 2051–2060 (2010). http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-10-2051 [CrossRef]
  3. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27, 1565–1570 (2009). http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-11-1565 [CrossRef]
  4. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultra-large modal areas in optical fibers,” Opt. Lett. 27, 1797–1799 (2006). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-12-1797 [CrossRef]
  5. A. Galvanauskas, M. C. Swan, and C.-H. Liu, “Effectively single-mode large core passive and active fibers with chirally coupled-core structures,” paper CMB1, CLEO/QELS, San Jose (2008).
  6. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Express 36, 689–691 (2011). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-5-689
  7. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-7-442 [CrossRef]
  8. J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15, 61–70 (2009). [CrossRef]
  9. S. Blin, D. M. Nguyen, T. N. Nguyen, M. Thual, T. Chartier, and L. Provino, “Simple modal analysis method for multi-mode fibers,” European Conference on Optical Communication (ECOC) (2009), P1.16.
  10. Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, and G. Leuchs, “Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry, ” Appl. Phys. B 96, 345–353 (2009). [CrossRef]
  11. P. Nandi, Z. Chen, A. Witkowska, W. J. Wadsworth, T. A. Birks, and J. C. Knight, “Characterization of a photonic crystal fiber mode converter using low coherence interferometry,” Opt. Lett. 34, 1123–1125 (2009). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-7-1123 [CrossRef] [PubMed]
  12. P. Hamel, Y. Jaoun, R. Gabet, and S. Ramachandran, “Optical low-coherence reflectometry for complete chromatic dispersion characterization of few-mode fibers,” Opt. Lett. 32, 1029–1031 (2007). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-9-1029 [CrossRef] [PubMed]
  13. S. Ramachandran, “Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices,” J. Lightwave Technol. 23, 3426–3443 (2005). [CrossRef]
  14. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 [CrossRef] [PubMed]
  15. J. F. de Boer, C. E. Saxer, and J. S. Nelson, “Stable carrier generation and phase-resolved digital data processing in optical coherence tomography,” Appl. Opt. 40, 5787–5790 (2001). http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-31-5787 . [CrossRef]
  16. X. Luo, P. Chen, and Y. Wang, “Power content M2-values smaller than one,” Appl. Phys. B 98, 181185 (2010).
  17. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15, 15402–15409 (2007). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15402 [CrossRef] [PubMed]
  18. K. G. Jespersen, T. Le, L. Grner-Nielsen, D. Jakobsen, M. E. V. Pederesen, M. B. Smedemand, S. R. Keiding, and B. Palsdottir, “A higher-order-mode fiber delivery for Ti:sapphire femtosecond lasers,” Opt. Express 18, 7798–7806 (2010). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7798 [CrossRef] [PubMed]
  19. S. Golowich and S. Ramachandran, “Impact of fiber design on polarization dependence in microbend gratings,” Opt. Express 13, 6870–6877 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6870 [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited