OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13171–13178

Phase plates for generation of variable amounts of primary spherical aberration

Eva Acosta and José Sasián  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13171-13178 (2011)
http://dx.doi.org/10.1364/OE.19.013171


View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss a set of phase plate-pairs for the generation of variable amounts of primary spherical aberration. The surface descriptions of these optical plates are provided, and their aberration-generating properties are verified with real ray-tracing. These plate-pairs are robust in that they allow large tolerances to spacing as well as errors in the relative displacement of the plates. Both primary spherical aberration (r4 ) and Zernike spherical aberration (6r4 - 6r2 + 1) can be generated. The amount of spherical aberration is proportional to the plate-pair displacement and in our example it reaches up to 48 waves (~8 waves Zernike) for a clear aperture of 25 mm.

© 2011 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.1000) Optical design and fabrication : Aberration compensation

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: May 3, 2011
Revised Manuscript: June 3, 2011
Manuscript Accepted: June 10, 2011
Published: June 22, 2011

Citation
Eva Acosta and José Sasián, "Phase plates for generation of variable amounts of primary spherical aberration," Opt. Express 19, 13171-13178 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13171


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007). [CrossRef]
  2. E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1-3), 145–150 (2004). [CrossRef]
  3. J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in blu-ray disc systems,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005). [CrossRef]
  4. P. Mouroulis, “Depth of field extension with spherical optics,” Opt. Express 16(17), 12995–13004 (2008). [CrossRef] [PubMed]
  5. M. Schwertner, M. J. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006). [CrossRef]
  6. R. A. Buchroeder and R. B. Hooker, “Aberration generator,” Appl. Opt. 14(10), 2476–2479 (1975). [CrossRef] [PubMed]
  7. L. W. Alvarez and W. E. Humphrey, “Variable power lens and system,” U.S. Patent 3,507,565 (1970).
  8. L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. Patent 3,305,294 (1967).
  9. A. W. Lohmann, “A new class of varifocal lenses,” Appl. Opt. 9(7), 1669–1671 (1970). [CrossRef] [PubMed]
  10. S. Bará, Z. Jaroszewicz, A. Kołodziejczyk, and V. Moreno, “Determination of basic grids for subtractive moire patterns,” Appl. Opt. 30(10), 1258–1262 (1991). [CrossRef] [PubMed]
  11. A. W. Lohmann and D. P. Paris, “Variable Fresnel zone pattern,” Appl. Opt. 6(9), 1567–1570 (1967). [CrossRef] [PubMed]
  12. A. Kołodziejczyk and Z. Jaroszewicz, “Diffractive elements of variable optical power and high diffraction efficiency,” Appl. Opt. 32(23), 4317–4322 (1993). [CrossRef] [PubMed]
  13. J. M. Burch and D. C. Williams, “Varifocal moiré zone plates for straightness measurement,” Appl. Opt. 16(9), 2445–2450 (1977). [CrossRef] [PubMed]
  14. N. López-Gil, H. C. Howland, B. Howland, N. Charman, and R. Applegate, “Generation of third order spherical and coma aberrations by use of radially symmetrical fourth order lenses,” J. Opt. Soc. Am. A 15(9), 2563–2571 (1998). [CrossRef]
  15. I. A. Palusinski, J. M. Sasián, and J. E. Greivenkamp, “Lateral-shift variable aberration generators,” Appl. Opt. 38(1), 86–90 (1999). [CrossRef] [PubMed]
  16. T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phaseplates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005). [CrossRef]
  17. A. Guirao, D. R. Williams, and I. G. Cox, “Effect of rotation and translation on the expected benefits of an ideal method to correct the eye’s higher order aberrations,” J. Opt. Soc. Am. A 18(5), 1003–1015 (2001). [CrossRef]
  18. E. Acosta and S. Bará, “Variable aberration generators using rotated Zernike plates,” J. Opt. Soc. Am. A 22(9), 1993–1996 (2005). [CrossRef] [PubMed]
  19. B. M. Pixton and J. E. Greivenkamp, “Spherical aberration gauge for human vision,” Appl. Opt. 49(30), 5906–5913 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited