OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13245–13256

Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter

Salah Ibrahim, Nicolas K. Fontaine, Stevan S. Djordjevic, Binbin Guan, Tiehui Su, Stanley Cheung, Ryan P. Scott, Andrew T. Pomerene, Liberty L. Seaford, Craig M. Hill, Steve Danziger, Zhi Ding, K. Okamoto, and S. J. B. Yoo  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13245-13256 (2011)
http://dx.doi.org/10.1364/OE.19.013245


View Full Text Article

Enhanced HTML    Acrobat PDF (2327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a fully-reconfigurable fourth-order optical lattice filter built by cascading identical unit cells consisting of a Mach-Zehnder interferometer (MZI) and a ring resonator. The filter is fabricated using a commercial silicon complementary metal oxide semiconductor (CMOS) process and reconfigured by current injection into p-i-n diodes with a reconfiguration time of less than 10 ns. The experimental results show full control over the single unit cell pole and zero, switching the unit cell transfer function between a notch filter and a bandpass filter, narrowing the notch width down to 400 MHz, and tuning the center wavelength over the full free spectral range (FSR) of 10 GHz. Theoretical and experimental results show tuning dynamics and associated optical losses in the reconfigurable filters. The full-control of each of the four cascaded single unit cells resulted in demonstrations of a number of fourth-order transfer functions. The multimedia experimental data show live tuning and reconfiguration of optical lattice filters.

© 2011 OSA

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(070.5753) Fourier optics and signal processing : Resonators
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 22, 2011
Revised Manuscript: June 9, 2011
Manuscript Accepted: June 15, 2011
Published: June 23, 2011

Citation
Salah Ibrahim, Nicolas K. Fontaine, Stevan S. Djordjevic, Binbin Guan, Tiehui Su, Stanley Cheung, Ryan P. Scott, Andrew T. Pomerene, Liberty L. Seaford, Craig M. Hill, Steve Danziger, Zhi Ding, K. Okamoto, and S. J. B. Yoo, "Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter," Opt. Express 19, 13245-13256 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13245


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. Dowling and D. L. MacFarlane, “Lightwave lattice filters for optically multiplexed communication systems,” J. Lightwave Technol. 12(3), 471–486 (1994). [CrossRef]
  2. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006). [CrossRef]
  3. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006). [CrossRef]
  4. K. W. Ang, T. Y. Liow, Q. Fang, M. B. Yu, F. F. Ren, S. Y. Zhu, J. Zhang, J. W. Ng, J. F. Song, Y. Z. Xiong, G. Q. Lo, and D. L. Kwong, “Silicon photonics technologies for monolithic electronic-photonic integrated circuit (EPIC) applications: Current progress and future outlook,” in IEEE International Electron Devices Meeting (IEDM), (2009), 1–4.
  5. D. J. Richardson, “Silicon photonics: Beating the electronics bottleneck,” Nat. Photonics 3(10), 562–564 (2009). [CrossRef]
  6. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, ““Electronic-photonic integrated circuits on the CMOS platform,” in Silicon Photonics, (,” Proc. SPIE 6125, 612502, 612502-10 (2006), http://dx.doi.org/10.1117/12.654455 . [CrossRef]
  7. S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23(1), 42–44 (2011). [CrossRef]
  8. P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010). [CrossRef] [PubMed]
  9. N. K. Fontaine, S. Ibrahim, S. Djordjevic, B. Guan, T. Su, S. Cheung, R. Yu, R. P. Scott, A. T. Pomerene, L. Gunter, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Fully reconfigurable silicon CMOS photonic lattice filters,” in European Conference and Exhibition on Optical Communication (ECOC), (2010), 1–3. http://dx.doi.org/10.1109/ECOC.2010.5621287
  10. L.-W. Luo, S. Ibrahim, A. Nitkowski, Z. Ding, C. B. Poitras, S. J. Ben Yoo, and M. Lipson, “High bandwidth on-chip silicon photonic interleaver,” Opt. Express 18(22), 23079–23087 (2010). [CrossRef] [PubMed]
  11. E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, “Programmable photonic lattice filters in InGaAsP–InP,” IEEE Photon. Technol. Lett. 22(2), 109–111 (2010). [CrossRef]
  12. M. S. Rasras, T. Kun-Yii, D. M. Gill, C. Young-Kai, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol. 27(12), 2105–2110 (2009). [CrossRef]
  13. K. Jinguji, “Synthesis of coherent two-port optical delay-line circuit with ring waveguides,” J. Lightwave Technol. 14(8), 1882–1898 (1996). [CrossRef]
  14. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  15. L. Zhou, S. S. Djordjevic, N. K. Fontaine, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Silicon microring resonator-based reconfigurable optical lattice filter for on-chip optical signal processing,” in IEEE LEOS Annual Meeting Conference Proceedings, (2009), 501–502. http://dx.doi.org/10.1109/LEOS.2009.5343162
  16. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005). [CrossRef] [PubMed]
  17. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal processing (Prentice Hall, 1999).
  18. M. Romagnoli and S. Ghidini, “Pirelli’s roadmap on silicon photonics,” in European Conference on Optical Communication (ECOC), Workshop 6: Silicon Photonics in Telecom/Datacom: from Basic Research to Industrial Deployment, (EPIC (CD), 2007).
  19. L. T. Su, J. E. Chung, D. A. Antoniadis, K. E. Goodson, and M. I. Flik, “Measurement and modeling of self-heating in SOI nMOSFET's,” IEEE Trans. Electron. Dev. 41(1), 69–75 (1994). [CrossRef]
  20. D. K. Gifford, B. J. Soller, M. S. Wolfe, and M. E. Froggatt, “Optical vector network analyzer for single-scan measurements of loss, group delay, and polarization mode dispersion,” Appl. Opt. 44(34), 7282–7286 (2005). [CrossRef] [PubMed]
  21. K. Takada and S.-i. Satoh, “Method for measuring the phase error distribution of a wideband arrayed waveguide grating in the frequency domain,” Opt. Lett. 31(3), 323–325 (2006). [CrossRef] [PubMed]
  22. L. Ljung, System identification: theory for the user (Prentice Hall PTR, 1999).
  23. G. T. Reed, Silicon photonics: the state of the art (Wiley, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (4505 KB)     
» Media 2: AVI (1322 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited