OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13326–13333

Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature

Joseph D. Miller, Mikhail N. Slipchenko, and Terrence R. Meyer  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13326-13333 (2011)
http://dx.doi.org/10.1364/OE.19.013326


View Full Text Article

Enhanced HTML    Acrobat PDF (1236 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) offers accurate thermometry at kHz rates for combustion diagnostics. In high-temperature flames, selection of probe-pulse characteristics is key to simultaneously optimizing signal-to-nonresonant-background ratio, signal strength, and spectral resolution. We demonstrate a simple method for enhancing signal-to-nonresonant-background ratio by using a narrowband Lorentzian filter to generate a time-asymmetric probe pulse with full-width-half-maximum (FWHM) pulse width of only 240 fs. This allows detection within just 310 fs after the Raman excitation for eliminating nonresonant background while retaining 45% of the resonant signal at 2000 K. The narrow linewidth is comparable to that of a time-symmetric sinc2 probe pulse with a pulse width of ~2.4 ps generated with a conventional 4-f pulse shaper. This allows nonresonant-background-free, frequency-domain vibrational spectroscopy at high temperature, as verified using comparisons to a time-dependent theoretical fs/ps CARS model.

© 2011 OSA

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5390) Ultrafast optics : Picosecond phenomena

ToC Category:
Spectroscopy

History
Original Manuscript: April 18, 2011
Revised Manuscript: June 11, 2011
Manuscript Accepted: June 13, 2011
Published: June 27, 2011

Citation
Joseph D. Miller, Mikhail N. Slipchenko, and Terrence R. Meyer, "Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature," Opt. Express 19, 13326-13333 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13326


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus Press, 1988).
  2. S. Roy, J. R. Gord, and A. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developements and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010). [CrossRef]
  3. R. J. Hall and L. R. Boedeker, “CARS thermometry in fuel-rich combustion zones,” Appl. Opt. 23(9), 1340–1346 (1984). [CrossRef] [PubMed]
  4. R. L. Farrow, R. P. Lucht, and L. A. Rahn, “Measurements of the nonresonant 3rd-order susceptibilities of gases using coherent anti-Stokes Raman spectroscopy,” J. Opt. Soc. Am. B 4(8), 1241–1246 (1987). [CrossRef]
  5. M. J. Cottereau, F. Grisch, and J. J. Marie, “CARS measurements of temperature and species concentrations in an IC engine,” Appl. Phys. B 51(1), 63–66 (1990). [CrossRef]
  6. A. C. Eckbreth and R. J. Hall, “CARS concentration sensitivity with and without non-resonant background suppression,” Combust. Sci. Technol. 25(5), 175–192 (1981). [CrossRef]
  7. L. A. Rahn, L. J. Zych, and P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30(2), 249–252 (1979). [CrossRef]
  8. W. Zinth, “Transient coherent Raman-scattering in the time and frequency domain,” Opt. Commun. 34(3), 479–482 (1980). [CrossRef]
  9. S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005). [CrossRef] [PubMed]
  10. S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005). [CrossRef]
  11. T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007). [CrossRef] [PubMed]
  12. H. U. Stauffer, W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H2.,” Appl. Opt. 50(4), A38–A48 (2011). [CrossRef] [PubMed]
  13. P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49(4), 969–984 (2010). [CrossRef]
  14. T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34(23), 3755–3757 (2009). [CrossRef] [PubMed]
  15. T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35(12), 2040–2042 (2010). [CrossRef] [PubMed]
  16. P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001). [CrossRef]
  17. T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: Determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115(12), 5418–5426 (2001). [CrossRef]
  18. M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002). [CrossRef] [PubMed]
  19. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006). [CrossRef]
  20. S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008). [CrossRef]
  21. J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Ann. Rev. Anal. Chem. (Palo Alto Calif) 1(1), 663–687 (2008). [CrossRef] [PubMed]
  22. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009). [CrossRef] [PubMed]
  23. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432 (2010). [CrossRef] [PubMed]
  24. F. M. Kamga and M. G. Sceats, “Pulse-sequenced coherent anti-Stokes Raman scattering spectroscopy: a method for suppression of the nonresonant background,” Opt. Lett. 5(3), 126–128 (1980). [CrossRef] [PubMed]
  25. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 44502 (2006). [CrossRef] [PubMed]
  26. D. Pestov, X. Wang, D. Cristancho, K. R. Hall, A. V. Sokolov, and M. O. Scully, “Real-time sensing of gas phase mixtures via coherent Raman spectroscopy,” in 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, Vols 1–9, 1471–1472 (2008).
  27. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007). [CrossRef] [PubMed]
  28. A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007). [CrossRef]
  29. S. O. Konorov, M. W. Blades, and R. F. B. Turner, “Lorentzian amplitude and phase pulse shaping for nonresonant background suppression and enhanced spectral resolution in coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Spectrosc. 64(7), 767–774 (2010). [CrossRef] [PubMed]
  30. A. C. Eckbreth, “BOXCARS: Crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32(7), 421–423 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited