OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13358–13364

Negative refraction and lensing at visible wavelength: experimental results using a waveguide array

José A. Ferrari and Erna Frins  »View Author Affiliations

Optics Express, Vol. 19, Issue 14, pp. 13358-13364 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Experimental results showing “negative refraction” and some kind of “lensing” −in the microwave-infrared range− are often presented in the literature as undisputable evidence of the existence of composite left-handed materials. The purpose of this paper is to present experimental results on “negative refraction” and “lensing” at visible wavelengths involving a waveguide array formed by a tight-packed bundle of glass fibers. We will demonstrate that the observed phenomena are not necessarily evidence of the existence of left-handed materials and that they can be fully explained by classical optic concepts, e.g. light propagation in waveguides.

© 2011 OSA

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

Original Manuscript: May 23, 2011
Revised Manuscript: June 13, 2011
Manuscript Accepted: June 15, 2011
Published: June 27, 2011

José A. Ferrari and Erna Frins, "Negative refraction and lensing at visible wavelength: experimental results using a waveguide array," Opt. Express 19, 13358-13364 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  3. M. W. McCall, “What is negative refraction?” J. Mod. Opt. 56(16), 1727–1740 (2009). [CrossRef]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  5. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003). [CrossRef] [PubMed]
  6. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004). [CrossRef]
  7. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003). [CrossRef] [PubMed]
  8. M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011). [CrossRef]
  9. D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?” J. Opt. Soc. Am. A 21(1), 122–131 (2004). [CrossRef] [PubMed]
  10. M. Nieto-Vesperinas, “Problem of image superresolution with a negative-refractive-index slab,” J. Opt. Soc. Am. A 21(4), 491–498 (2004). [CrossRef] [PubMed]
  11. S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86(12), 126101 (2005). [CrossRef]
  12. J. A. Ferrari and C. D. Perciante, “Superlenses, metamaterials, and negative refraction,” J. Opt. Soc. Am. A 26(1), 78–84 (2009). [CrossRef] [PubMed]
  13. B. A. Munk, Metamaterials: Critique and Alternatives (John Wiley & Sons, 2009).
  14. T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials,” Phys. Rev. B 79(23), 235121 (2009). [CrossRef]
  15. Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009). [CrossRef]
  16. P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005). [CrossRef]
  17. A. Ono, J.-I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005). [CrossRef] [PubMed]
  18. J. A. Ferrari, E. M. Frins, and A. Lezama, “Geometrical approach to backscattering from a side-illuminated optical fiber,” Opt. Commun. 113(1-3), 46–52 (1994). [CrossRef]
  19. E. Frins, H. Failache, J. Ferrari, G. D. Costa, and A. Lezama, “Optical-fiber diameter determination by scattering at oblique incidence,” Appl. Opt. 33(31), 7472–7476 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited