OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13445–13453

Linear dispersive effect on random lasing modes

Yong Liu, Jinsong Liu, and Kejia Wang  »View Author Affiliations

Optics Express, Vol. 19, Issue 14, pp. 13445-13453 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (951 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A model, by combining Maxwell’s equations with all-parameters of Sellmeier’s fitting equations and four-level rate equations, is built to investigate linear dispersive effect on the property of random lasing modes. Computed results show that the first excited modes for both dispersive and non-dispersive scattering cases have almost the same resonant frequency but the spectral intensity for dispersive case is lower than that for non-dispersive case, and there exist more modes in the whole spectra for dispersive case. Further analysis demonstrates that threshold of random lasing in dispersive case is higher than that of the non-dispersive case.

© 2011 OSA

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(190.5890) Nonlinear optics : Scattering, stimulated
(260.5740) Physical optics : Resonance

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 18, 2011
Revised Manuscript: May 24, 2011
Manuscript Accepted: June 13, 2011
Published: June 27, 2011

Yong Liu, Jinsong Liu, and Kejia Wang, "Linear dispersive effect on random lasing modes," Opt. Express 19, 13445-13453 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994). [CrossRef]
  2. H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999). [CrossRef]
  3. X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85(1), 70–73 (2000). [CrossRef] [PubMed]
  4. P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002). [CrossRef]
  5. C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamic response and relaxation oscillations in random lasers,” Phys. Rev. B 65(4), 041103–041106 (2002). [CrossRef]
  6. T. Ito and M. Tomita, “Polarization-dependent laser action in a two-dimensional random medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(2), 027601–027604 (2002). [CrossRef] [PubMed]
  7. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903–053907 (2004). [CrossRef] [PubMed]
  8. X. Jiang, S. Feng, C. M. Soukoulis, J. Zi, J. D. Joannopoulos, and H. Cao, “Coupling, competition, and stability of modes in random lasers,” Phys. Rev. B 69(10), 104202 (2004). [CrossRef]
  9. J. S. Liu, H. Lu, and C. Wang, “Spectral time evolution of quasistate modes in two-dimensional random media,” Acta Phys. Sin. 54, 3116 (2005) (in Chinese).
  10. J. S. Liu and Z. Xiong, “Theoretical investigation on the threshold property of localized modes based on spectral width in two-dimensional random media,” Opt. Commun. 268(2), 294–299 (2006). [CrossRef]
  11. J. S. Liu, H. Wang, and Z. Xiong, “Origin of light localization from orientational disorder in one and two-dimensional random media with uniaxial scatterers,” Phys. Rev. B 73(19), 195110 (2006). [CrossRef]
  12. C. Wang and J. S. Liu, “Polarization dependence of lasing modes in two-dimensional random lasers,” Phys. Lett. A 353(2-3), 269–272 (2006). [CrossRef]
  13. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007). [CrossRef] [PubMed]
  14. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008). [CrossRef] [PubMed]
  15. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008). [CrossRef]
  16. O. Zaitsev and L. Deych, “Recent developments in the theory of multimode random lasers,” J. Opt. 12(2), 024001–024013 (2010). [CrossRef]
  17. R. M. Joseph and A. Taflove, “FDTD Maxwell’s equations modes for nonlinear electrodynamics and optics,” IEEE Trans. Antenn. Propag. 45(3), 364–374 (1997). [CrossRef]
  18. M. J. Weber, CRC Handbook of Optical Materials (CRC Press, 2003).
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited