OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13497–13502

Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector

Min Ren, Xiaorong Gu, Yan Liang, Weibin Kong, E. Wu, Guang Wu, and Heping Zeng  »View Author Affiliations

Optics Express, Vol. 19, Issue 14, pp. 13497-13502 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (798 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated a laser ranging system with single photon detection at 1550 nm. The single-photon detector was a 1-GHz sine-wave gated InGaAs/InP avalanche photodiode. In daylight, 8-cm depth resolution was achieved directly by using a time-of-flight approach based on time-correlated single photon counting measurement. This system presented a potential for low energy level and eye-safe laser ranging system in long-range measurement.

© 2011 OSA

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.3780) Detectors : Low light level
(280.3400) Remote sensing and sensors : Laser range finder
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing

Original Manuscript: April 21, 2011
Revised Manuscript: June 10, 2011
Manuscript Accepted: June 16, 2011
Published: June 28, 2011

Min Ren, Xiaorong Gu, Yan Liang, Weibin Kong, E. Wu, Guang Wu, and Heping Zeng, "Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector," Opt. Express 19, 13497-13502 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985). [CrossRef]
  2. W. C. Priedhorsky, R. C. Smith, and C. Ho, “Laser ranging and mapping with a photon-counting detector,” Appl. Opt. 35(3), 441–452 (1996). [CrossRef] [PubMed]
  3. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22(8), 543–545 (1997). [CrossRef] [PubMed]
  4. J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37(31), 7298–7304 (1998). [CrossRef] [PubMed]
  5. M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001). [CrossRef]
  6. J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3–4), 503–549 (2002). [CrossRef]
  7. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007). [CrossRef] [PubMed]
  8. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008). [CrossRef] [PubMed]
  9. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009). [CrossRef] [PubMed]
  10. J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010). [CrossRef]
  11. C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, and S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt. 38(9), 1833–1840 (1999). [CrossRef] [PubMed]
  12. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002). [CrossRef] [PubMed]
  13. R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23–36 (2005).
  14. N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010). [CrossRef] [PubMed]
  15. C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84(19), 3762–3764 (2004). [CrossRef]
  16. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008). [CrossRef]
  17. J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” N. J. Phys. 11(6), 065004 (2009). [CrossRef]
  18. M. Ren, G. Wu, E. Wu, and H. Zeng, “Experimental demonstration of counterfactual quantum key distribution,” Laser Phys. 21(4), 755–760 (2011). [CrossRef]
  19. N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14(21), 10043–10049 (2006). [CrossRef] [PubMed]
  20. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007). [CrossRef]
  21. N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17(8), 6275–6282 (2009). [CrossRef] [PubMed]
  22. L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94(16), 161106 (2009). [CrossRef]
  23. N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22(8), 529–531 (2010). [CrossRef]
  24. Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010). [CrossRef]
  25. X. Chen, E. Wu, G. Wu, and H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express 18(7), 7010–7018 (2010). [CrossRef] [PubMed]
  26. Y. Jian, E. Wu, G. Wu, and H. Zeng, “Optically self-balanced InGaAs-InP Avalanche photodiode for Infrared single-photon detection,” IEEE Photon. Technol. Lett. 22(3), 173–175 (2010). [CrossRef]
  27. Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96(19), 191107 (2010). [CrossRef]
  28. J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009). [CrossRef]
  29. J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” arXiv: 1002.3240v1 [quant-ph]. (2010).
  30. M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008). [CrossRef]
  31. C. Hu, M. Liu, X. Zheng, and J. C. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46(1), 35–39 (2010). [CrossRef]
  32. J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs–InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited