OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13540–13550

Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP

P. Muñoz, R. García-Olcina, C. Habib, L. R. Chen, X. J. M. Leijtens, T. de Vries, D. Robbins, and J. Capmany  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13540-13550 (2011)
http://dx.doi.org/10.1364/OE.19.013540


View Full Text Article

Enhanced HTML    Acrobat PDF (1714 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm2 and is able to perform label swapping operations required in SAC at a speed of 155 Mbps. The device was manufactured in InP using a multiple purpose generic integration scheme. Compared to previous SAC label swapper demonstrations, using discrete component assembly, this label swapper chip operates two order of magnitudes faster.

© 2011 OSA

OCIS Codes
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4259) Fiber optics and optical communications : Networks, packet-switched
(130.4815) Integrated optics : Optical switching devices
(130.6622) Integrated optics : Subsystem integration and techniques
(130.7405) Integrated optics : Wavelength conversion devices
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Integrated Optics

History
Original Manuscript: May 9, 2011
Revised Manuscript: June 14, 2011
Manuscript Accepted: June 14, 2011
Published: June 28, 2011

Citation
P. Muñoz, R. García-Olcina, C. Habib, L. R. Chen, X. J. M. Leijtens, T. de Vries, D. Robbins, and J. Capmany, "Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP," Opt. Express 19, 13540-13550 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13540


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “Cisco visual networking index: forecast and methodology, 2009–2014,” White Paper, Cisco Networks (2010).
  2. S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic Internet,” J. Lightwave Technol. 24, 4468–4492 (2006). [CrossRef]
  3. R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, “Energy efficiency in the future Internet: a survey of existing approaches and trends in energy-aware fixed network infrastructures,” IEEE Commun. Surv. Tutorials PP, 1–22 (2010).
  4. D. Blumenthal, B.-E. Olsson, G. Rossi, T. Dimmick, L. Rau, M. Masanovic, O. Lavrova, R. Doshi, O. Jerphagnon, J. Bowers, V. Kaman, L. Coldren, and J. Barton, “All-optical label swapping networks and technologies,” J. Lightwave Technol. 18, 2058–2075 (2000). [CrossRef]
  5. A. Srivatsa, H. de Waardt, M. Hill, G. Khoe, and H. Dorren, “All-optical serial header processing based on two-pulse correlation,” Electron. Lett. 37, 234–235 (2001). [CrossRef]
  6. P. Seddighian, J. Rosas-Fernández, S. Ayotte, L. Rusch, S. Larochelle, and A. Leon-Garcia, “Low-cost scalable optical packet switching networks with multi-wavelength labels,” in Proc. OFC/NFOEC (2007), paper OthF5.
  7. R. Gordon and L. Chen, “Demonstration of all-photonic spectral label-switching for optical MPLS networks,” IEEE Photon. Technol. Lett. 18, 586–588 (2006). [CrossRef]
  8. C. Habib, V. Baby, L. Chen, A. Delisle-Simard, and S. LaRochelle, “All-optical swapping of spectral amplitude code labels using nonlinear media and semiconductor fiber ring lasers,” IEEE J. Sel. Top. Quantum Electron. 14, 879–888 (2008). [CrossRef]
  9. C. Cole, B. Huebner, and J. Johnson, “Photonic integration for high-volume, low-cost applications,” IEEE Commun. Mag. 47, S16–S22 (2009). [CrossRef]
  10. E. Bente and M. Smit, “Ultrafast InP optical integrated circuits,” in Optoelectronic Integrated Circuits VIII , L.A. Eldada and E.-H. Lee, eds., Proc. SPIE 6124, 612419 (2006).
  11. X. Leijtens, “JePPIX: the platform for InP-based photonics,” in Proceedings of the 15th European Conference on Integrated Optics (ECIO, 2010), pp. ThG3–1/2.
  12. N. Calabretta, J. Hyun-Do, J. Llorente, E. Tangdiongga, T. Koonen, and H. Dorren, “All-optical label swapping of scalable in-band address labels and 160-Gb/s data packets,” J. Lightwave Technol. 27, 214–223 (2009). [CrossRef]
  13. J. den Besten, “Integration of multiwavelength lasers with fast electro-optical modulators,” Ph.D. thesis, TU Eindhoven (2004).
  14. B. Saleh and M. Teich, Fundamentals of Photonics (Wiley, 2007), Chap. 2.
  15. M. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996). [CrossRef]
  16. G. Eisenstein, “Semiconductor Optical Amplifiers,” IEEE Circuits Devices Mag. 5, 25–30 (1989). [CrossRef]
  17. P. Munñoz, R. Garcia-Olcina, J. D. Domenech, M. Rius, J. Capmany, L. R. Chen, C. Habib, X. J. M. Leijtens, T. de Vries, M. R. Heck, L. M. Augustin, R. Nötzel, and D. J. Robbins, “Multi-wavelength lasers based on an arrayed waveguide grating and Sagnac loop reflectors monolithically integrated on InP,” in Proceedings of the 15th European Conference on Integrated Optics (ECIO, 2010), pp. WeF2–1/2.
  18. P. Munoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightwave Technol. 20, 661–674 (2002). [CrossRef]
  19. L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]
  20. Y. Barbarin, E. Bente, T. de Vries, J. den Besten, P. van Veldhoven, M. Sander-Jochem, E. Smalbrugge, F. van Otten, E. Geluk, M. Heck, X. Leijtens, J. van der Tol, F. Karouta, Y. Oei, R. Notzel, and M. Smit, “Butt-joint interfaces in InP/InGaAsP waveguides with very low reflectivity and low loss,” in Proc. Symposium IEEE/LEOS Benelux Chapter , (IEEE, 2005).
  21. C. E. Spurgeon, Ethernet: The Definitive Guide (O’Reilly & Associates, Inc., 2000).
  22. A. Zilkie, J. Meier, M. Mojahedi, P. Poole, P. Barrios, D. Poitras, T. Rotter, C. Yang, A. Stintz, K. Malloy, P. Smith, and J. Aitchison, “Carrier dynamics of quantum-dot, quantum-dash, and quantum-well semiconductor optical amplifiers operating at 1.55 μm,” IEEE J. Quantum Electron. 43, 982–991 (2007). [CrossRef]
  23. F. Soares, F. Karouta, E. Geluk, J. Zantvoort, H. de Waardt, R. Baets, and M. Smit, “Low-loss InP-based spot-size converter based on a vertical taper,” in Proceedings of the 15th European Conference on Integrated Optics (ECIO, 2005), pp. 104–107.
  24. R. Garcia-Olcina, “Sistema de fabricacion de altas prestaciones de redes de difraccion de Bragg en fibra y aplicaciones al campo de los sensores opticos y a los sistemas de comunicaciones opticas,” Ph.D. thesis, Universitat Politecnica Valencia (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited