OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13565–13577

Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis

Duo Lin, Shangyuan Feng, Jianji Pan, Yanping Chen, Juqiang Lin, Guannan Chen, Shusen Xie, Haishan Zeng, and Rong Chen  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13565-13577 (2011)
http://dx.doi.org/10.1364/OE.19.013565


View Full Text Article

Enhanced HTML    Acrobat PDF (1239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The capabilities of using gold nanoparticle based surface-enhanced Raman spectroscopy (SERS) to obtain blood serum biochemical information for non-invasive colorectal cancer detection were presented in this paper. SERS measurements were performed on two groups of blood serum samples: one group from patients (n = 38) with pathologically confirmed colorectal cancer and the other group from healthy volunteers (control subjects, n = 45). Tentative assignments of the Raman bands in the measured SERS spectra suggested interesting cancer specific biomolecular changes, including an increase in the relative amounts of nucleic acid, a decrease in the percentage of saccharide and proteins contents in the blood serum of colorectal cancer patients as compared to that of healthy subjects. Both empirical approach and multivariate statistical techniques, including principal components analysis (PCA) and linear discriminant analysis (LDA) were employed to develop effective diagnostic algorithms for classification of SERS spectra between normal and colorectal cancer serum. The empirical diagnostic algorithm based on the ratio of the SERS peak intensity at 725 cm−1 for adenine to the peak intensity at 638 cm−1 for tyrosine achieved a diagnostic sensitivity of 68.4% and specificity of 95.6%, whereas the diagnostic algorithms based on PCA-LDA yielded a diagnostic sensitivity of 97.4% and specificity of 100% for separating cancerous samples from normal samples. Receiver operating characteristic (ROC) curves further confirmed the effectiveness of the diagnostic algorithm based on PCA-LDA technique. The results from this exploratory study demonstrated that gold nanoparticle based SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of colorectal cancers.

© 2011 OSA

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 22, 2011
Revised Manuscript: June 11, 2011
Manuscript Accepted: June 11, 2011
Published: June 29, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Duo Lin, Shangyuan Feng, Jianji Pan, Yanping Chen, Juqiang Lin, Guannan Chen, Shusen Xie, Haishan Zeng, and Rong Chen, "Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis," Opt. Express 19, 13565-13577 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13565


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. P. Xavier, C. F. Lima, A. Preto, R. Seruca, M. Fernandes-Ferreira, and C. Pereira-Wilson, “Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells,” Cancer Lett. 281(2), 162–170 (2009). [CrossRef] [PubMed]
  2. S. J. Winawer, “Colorectal cancer screening,” Best Pract. Res. Clin. Gastroenterol. 21(6), 1031–1048 (2007). [CrossRef] [PubMed]
  3. R. Labianca, G. D. Beretta, S. Mosconi, L. Milesi, and M. A. Pessi, “Colorectal cancer: screening,” Ann. Oncol. 16(Suppl 2), ii127–ii132 (2005). [CrossRef] [PubMed]
  4. R. M. McLoughlin and C. A. O’Morain, “Colorectal cancer screening,” World J. Gastroenterol. 12(42), 6747–6750 (2006). [PubMed]
  5. A. Kudelski, “Analytical applications of Raman spectroscopy,” Talanta 76(1), 1–8 (2008). [CrossRef] [PubMed]
  6. Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003). [CrossRef] [PubMed]
  7. S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue,” Br. J. Cancer 98(2), 457–465 (2008). [CrossRef] [PubMed]
  8. S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy—from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009). [CrossRef] [PubMed]
  9. S. Devpura, J. Thakur, F. Sarkar, W. Sakr, V. Naik, and R. Naik, “Detection of benign epithelia, prostatic intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy,” Vib. Spectrosc. 53(2), 227–232 (2010). [CrossRef]
  10. U. Utzinger, D. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc. 55(8), 955–959 (2001). [CrossRef]
  11. S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010). [CrossRef] [PubMed]
  12. K. Kneipp, A. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. Shafer-Peltier, J. Motz, R. Dasari, and M. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56(2), 150–154 (2002). [CrossRef]
  13. M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974). [CrossRef]
  14. K. Kneipp and M. Moskovits, “Surface-enhanced raman scattering,” Phys. Today 60(11), 40–46 (2007). [CrossRef]
  15. Y. Badr and M. A. Mahmoud, “Effect of silver nanowires on the surface-enhanced Raman spectra (SERS) of the RNA bases,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 63(3), 639–645 (2006). [CrossRef] [PubMed]
  16. Y. Liang, J. L. Gong, Y. Huang, Y. Zheng, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools,” Talanta 72(2), 443–449 (2007). [CrossRef] [PubMed]
  17. Z. S. Wu, G. Z. Zhou, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering,” Talanta 70(3), 533–539 (2006). [CrossRef] [PubMed]
  18. J. D. Guingab, B. Lauly, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid,” Talanta 74(2), 271–274 (2007). [CrossRef] [PubMed]
  19. M. Culha, D. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert Rev. Mol. Diagn. 3(5), 669–675 (2003). [CrossRef] [PubMed]
  20. J. D. Driskell, A. G. Seto, L. P. Jones, S. Jokela, R. A. Dluhy, Y. P. Zhao, and R. A. Tripp, “Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS),” Biosens. Bioelectron. 24(4), 917–928 (2008). [CrossRef] [PubMed]
  21. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007). [CrossRef] [PubMed]
  22. S. Lee, H. Chon, M. Lee, J. Choo, S. Y. Shin, Y. H. Lee, I. J. Rhyu, S. W. Son, and C. H. Oh, “Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres,” Biosens. Bioelectron. 24(7), 2260–2263 (2009). [CrossRef] [PubMed]
  23. D. Rohleder, W. Kiefer, and W. Petrich, “Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy,” Analyst (Lond.) 129(10), 906–911 (2004). [CrossRef] [PubMed]
  24. S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011). [CrossRef] [PubMed]
  25. H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B 94(4), 667–672 (2009). [CrossRef]
  26. X. Huang and M. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Advert. Res. 1(1), 13–28 (2010). [CrossRef]
  27. S. Feng, J. Lin, M. Cheng, Y. Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen, and H. Zeng, “Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation,” Appl. Spectrosc. 63(10), 1089–1094 (2009). [CrossRef] [PubMed]
  28. K. Grabar, R. Freeman, M. Hommer, and M. Natan, “Preparation and characterization of Au colloid monolayers,” Anal. Chem. 67(4), 735–743 (1995). [CrossRef]
  29. R. Liu, X. Zi, Y. Kang, M. Si, and Y. Wu, “Surface-enhanced Raman scattering study of human serum on PVA Ag nanofilm prepared by using electrostatic self-assembly,” J. Raman Spectrosc. 42(2), 137–144 (2011). [CrossRef]
  30. J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90(2), 648–656 (2006). [CrossRef] [PubMed]
  31. Z. Movasaghi, S. Rehman, and I. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007). [CrossRef]
  32. J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22(4), 229–236 (2007). [CrossRef] [PubMed]
  33. H. Yao, Z. Tao, M. Ai, L. Peng, G. Wang, B. He, and Y. Li, “Raman spectroscopic analysis of apoptosis of single human gastric cancer cells,” Vib. Spectrosc. 50(2), 193–197 (2009). [CrossRef]
  34. L. Brancaleon, A. J. Durkin, J. H. Tu, G. Menaker, J. D. Fallon, and N. Kollias, “In vivo fluorescence spectroscopy of nonmelanoma skin cancer,” Photochem. Photobiol. 73(2), 178–183 (2001). [CrossRef] [PubMed]
  35. E. Gormally, E. Caboux, P. Vineis, and P. Hainaut, “Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance,” Mutat. Res. 635(2-3), 105–117 (2007). [CrossRef] [PubMed]
  36. E. Benedetti, E. Bramanti, F. Papineschi, I. Rossi, and E. Benedetti, “Determination of the relative amount of nucleic acids and proteins in leukemic and normal lymphocytes by means of Fourier transform infrared microspectroscopy,” Appl. Spectrosc. 51(6), 792–797 (1997). [CrossRef]
  37. C. P. Schultz, K. Z. Liu, J. B. Johnston, and H. H. Mantsch, “Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes,” J. Mol. Struct. 408-409, 253–256 (1997). [CrossRef]
  38. I. Notingher, G. Jell, P. Notingher, I. Bisson, O. Tsigkou, J. Polak, M. Stevens, and L. Hench, “Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells,” J. Mol. Struct. 744-747, 179–185 (2005). [CrossRef]
  39. N. A. Obuchowski, “Receiver operating characteristic curves and their use in radiology,” Radiology 229(1), 3–8 (2003). [CrossRef] [PubMed]
  40. N. A. Obuchowski, M. L. Lieber, and F. H. Wians., “ROC curves in clinical chemistry: uses, misuses, and possible solutions,” Clin. Chem. 50(7), 1118–1125 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited