OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 13738–13749

Dirac-cone photonic surface states in three-dimensional photonic crystal slab

Wei Zhong and Xiangdong Zhang  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 13738-13749 (2011)
http://dx.doi.org/10.1364/OE.19.013738


View Full Text Article

Enhanced HTML    Acrobat PDF (1277 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a multiple-scattering method in conjunction with supercell calculations to study the electromagnetic surface states in three-dimensional photonic crystal slab. Using our technique, we obtain the first prediction of Dirac-cone photonic surface state in some three-dimensional photonic crystal slabs. Such a state can be used to investigate some extremal transmission phenomena of electromagnetic waves near the Dirac point on the surface of the crystal, which is similar to the case of electron on the surface of topological insulators.

© 2011 OSA

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: April 26, 2011
Revised Manuscript: June 10, 2011
Manuscript Accepted: June 19, 2011
Published: July 1, 2011

Citation
Wei Zhong and Xiangdong Zhang, "Dirac-cone photonic surface states in three-dimensional photonic crystal slab," Opt. Express 19, 13738-13749 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-13738


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic Crystal-Molding the Flow of Light,” Princeton University Press, Princeton, NJ, (1995).
  4. C. M. Soukoulis, “Photonic Band Gap Materials,” Kluwer, Academic, Dordrecht (1996).
  5. K. Sakoda, “Optical properties of photonic crystals,” Springer (2001).
  6. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44(19), R10961 (1991). [CrossRef]
  7. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993). [CrossRef] [PubMed]
  8. P. Etchegoin and R. T. Phillips, “Photon focusing, internal diffraction, and surface states in periodic dielectric structures,” Phys. Rev. B Condens. Matter 53(19), 12674–12683 (1996). [CrossRef] [PubMed]
  9. J. Elson and P. Tran, “Coupled-mode calculation with the R-matrix propagator for the dispersion of surface waves on a truncated photonic crystal,” Phys. Rev. B 54(3), 1711–1715 (1996). [CrossRef]
  10. F. Ramos-Mendieta and P. Halevi, “Surface electromagnetic waves in two-dimensional photonic crystals: Effect of the position of the surface plane,” Phys. Rev. B 59(23), 15112–15120 (1999). [CrossRef]
  11. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1803 (1999). [CrossRef]
  12. X. Zhang, L.-M. Li, Z.-Q. Zhang, and C. Chan, “Surface states in two-dimensional metallodielectric photonic crystals studied by a multiple-scattering method,” Phys. Rev. B 63(12), 125114 (2001). [CrossRef]
  13. S. Enoch, E. Popov, and N. Bonod, “Analysis of the physical origin of surface modes on finite-size photonic crystals,” Phys. Rev. B 72(15), 155101 (2005). [CrossRef]
  14. K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460(7253), 367–370 (2009). [CrossRef] [PubMed]
  15. C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin Hall effect,” Phys. Rev. Lett. 95(14), 146802 (2005). [CrossRef] [PubMed]
  16. B. A. Bernevig and S. C. Zhang, “Quantum spin Hall effect,” Phys. Rev. Lett. 96(10), 106802 (2006). [CrossRef] [PubMed]
  17. J. E. Moore, “The birth of topological insulators,” Nature 464(7286), 194–198 (2010). [CrossRef] [PubMed]
  18. X.-L. Qi and S.-C. Zhang, “The quantum spin Hall effect and topological insulators,” Phys. Today 63(1), 33 (2010). [CrossRef]
  19. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452(7190), 970–974 (2008). [CrossRef] [PubMed]
  20. D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of unconventional quantum spin textures in topological insulators,” Science 323(5916), 919–922 (2009). [CrossRef] [PubMed]
  21. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single Dirac cone on the surface,” Nat. Phys. 5(6), 398–402 (2009). [CrossRef]
  22. Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, “Experimental realization of a three-dimensional topological insulator, Bi2Te3,” Science 325(5937), 178–181 (2009). [CrossRef] [PubMed]
  23. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A tunable topological insulator in the spin helical Dirac transport regime,” Nature 460(7259), 1101–1105 (2009). [CrossRef] [PubMed]
  24. D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3,” Phys. Rev. Lett. 103(14), 146401 (2009). [CrossRef] [PubMed]
  25. H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009). [CrossRef]
  26. T. Zhang, P. Cheng, X. Chen, J.-F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, and Q.-K. Xue, “Experimental demonstration of topological surface states protected by time-reversal symmetry,” Phys. Rev. Lett. 103(26), 266803 (2009). [CrossRef] [PubMed]
  27. J. B. Pendry, “Low energy electron diffraction” (Academic, London, 1974).
  28. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998). [CrossRef]
  29. A. Modinos, “Scattering of electromagnetic waves by a plane of spheres-formalism,” Physica A 141(2-3), 575–588 (1987). [CrossRef]
  30. F. S. Ham and B. Segall, “Energy bands in periodic lattices: Green’s function method,” Phys. Rev. 124(6), 1786–1796 (1961). [CrossRef]
  31. K. Kambe, “Theory of low-energy electron diffraction,” 23a, 1280–1294 (1968).
  32. A. Moroz, “Three-dimensional complete photonic-band-gap structures in the visible,” Phys. Rev. Lett. 83(25), 5274–5277 (1999). [CrossRef]
  33. W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, “Robust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84(13), 2853–2856 (2000). [CrossRef] [PubMed]
  34. W. Y. Zhang, C. T. Chan, and P. Sheng, “Multiple scattering theory and its application to photonic band gap systems consisting of coated spheres,” Opt. Express 8(3), 203–208 (2001). [CrossRef] [PubMed]
  35. H. Lin, R. S. Markiewicz, L. A. Wray, L. Fu, M. Z. Hasan, and A. Bansil, “Single-Dirac-cone topological surface states in the TlBiSe(2) class of topological semiconductors,” Phys. Rev. Lett. 105(3), 036404 (2010). [CrossRef] [PubMed]
  36. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008). [CrossRef] [PubMed]
  37. S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008). [CrossRef]
  38. R. A. Sepkhanov, Ya. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A 75(6), 063813 (2007). [CrossRef]
  39. X. D. Zhang, “Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal,” Phys. Rev. Lett. 100(11), 113903 (2008). [CrossRef] [PubMed]
  40. X. D. Zhang and Z. Y. Liu, “Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals,” Phys. Rev. Lett. 101(26), 264303 (2008). [CrossRef] [PubMed]
  41. S. R. Zandbergen and M. J. A. de Dood, “Experimental observation of strong edge effects on the pseudodiffusive transport of light in photonic graphene,” Phys. Rev. Lett. 104(4), 043903 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited