OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 13787–13792

Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer

Dan Yu, Hongpeng Liu, Yongyuan Jiang, and Xiudong Sun  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 13787-13792 (2011)
http://dx.doi.org/10.1364/OE.19.013787


View Full Text Article

Enhanced HTML    Acrobat PDF (1462 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mutual diffusion dynamic model with nonlocal response was proposed to describe the grating formation in SiO2 nanopraticles dispersed PQ-PMMA photopolymer. The mutual-diffusion physical mechanism between PQ and SiO2 nanoparticles is analyzed. The grating formation kinetics and dynamic redistribution of components is simulated by introducing the nonlocal effect. In experiment the dark enhancement of grating after short exposure and the photopolymerization under consecutive exposure are measured. The improvement of SiO2 nanoparticles for the holographic properties is achieved quantitatively. Finally the comparison of theoretical and experimental results is presented for understanding the mutual-diffusion characteristics.

© 2011 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials

ToC Category:
Holography

History
Original Manuscript: April 19, 2011
Revised Manuscript: May 26, 2011
Manuscript Accepted: May 29, 2011
Published: July 5, 2011

Citation
Dan Yu, Hongpeng Liu, Yongyuan Jiang, and Xiudong Sun, "Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer," Opt. Express 19, 13787-13792 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-13787


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83(3), 410–412 (2003). [CrossRef]
  2. N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43(10), 2125–2129 (2004). [CrossRef] [PubMed]
  3. W. S. Kim, Y. C. Jeong, and J. K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87(1), 012106 (2005). [CrossRef]
  4. S. Lee, Y. C. Jeong, J. Lee, and J. K. Park, “Multifunctional photoreactive inorganic cages for three-dimensional holographic data storage,” Opt. Lett. 34(20), 3095–3097 (2009). [CrossRef] [PubMed]
  5. A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, and P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010). [CrossRef] [PubMed]
  6. L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008). [CrossRef]
  7. A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthrenequinone in polycarbonate,” J. Opt. A, Pure Appl. Opt. 4(4), 387–392 (2002). [CrossRef]
  8. G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998). [CrossRef] [PubMed]
  9. S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000). [CrossRef] [PubMed]
  10. L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Y. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15(14), 8543–8549 (2007). [CrossRef] [PubMed]
  11. H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009). [CrossRef]
  12. H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010). [CrossRef] [PubMed]
  13. D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010). [CrossRef]
  14. D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011). [CrossRef]
  15. J. M. Russo, J. E. Castillo, and R. K. Kostuk, “Effect of silicon dioxide nanoparticles on the characteristics of PQ/PMMA holographic filters,” Proc. SPIE 6653, 66530D, 66530D–9 (2007). [CrossRef]
  16. Y. Luo, J. M. Russo, R. K. Kostuk, and G. Barbastathis, “Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters,” Opt. Lett. 35(8), 1269–1271 (2010). [CrossRef] [PubMed]
  17. J. D. Busbee, A. T. yuhl, L. V. Natarajan, V. P. Tongdilia, T. J. Bunning, R. A. Vaia, and P. V. Braun, “SiO2 nanoparticle sequestration via reactive functionalization in holographic polymer dispersed liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3659–3662 (2009). [CrossRef]
  18. S. Lee, Y.-C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009). [CrossRef]
  19. G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, “Spatial transfer of matter as a method of holographic recording in photoformers,” Opt. Commun. 174(5-6), 391–404 (2000). [CrossRef]
  20. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27(2), 197–203 (2010). [CrossRef]
  21. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994). [CrossRef]
  22. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000). [CrossRef] [PubMed]
  23. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009). [CrossRef]
  24. S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009). [CrossRef] [PubMed]
  25. E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Non-local response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16(15), 11253–11258 (2008). [CrossRef] [PubMed]
  26. A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of phenanthrenequinone in poly(methyl methacrylate): holographic measurements,” Polym. Sci. Ser. A 38(1), 56–63 (1996).
  27. N. Suzuki and Y. Tomita, “Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films,” Appl. Opt. 46(27), 6809–6814 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited