OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 13793–13805

Multi-modal transmission of microwaves through hole arrays

James D. Edmunds, Euan Hendry, Alastair P. Hibbins, J. Roy Sambles, and Ian J. Youngs  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 13793-13805 (2011)
http://dx.doi.org/10.1364/OE.19.013793


View Full Text Article

Enhanced HTML    Acrobat PDF (1993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The microwave transmission through hole arrays in thick metal plates for both large holes (cut-off below onset of diffraction) and small holes (cut-off above onset of diffraction) have been compared through both experiment and modelling. Enhanced transmission is in part mediated by the excitation of diffractively coupled surface waves. Large holes, with cut-off below the onset of diffraction (due to the hole periodicity), are able to support multiple modes in transmission when the depth of the holes is sufficient to support quantisation in the propagation direction. Small holes, with cut-off above the onset of diffraction however only support two coupled surface modes (symmetric and anti-symmetric) below diffraction.

© 2011 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6690) Optics at surfaces : Surface waves
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: May 5, 2011
Revised Manuscript: June 10, 2011
Manuscript Accepted: June 10, 2011
Published: July 5, 2011

Citation
James D. Edmunds, Euan Hendry, Alastair P. Hibbins, J. Roy Sambles, and Ian J. Youngs, "Multi-modal transmission of microwaves through hole arrays," Opt. Express 19, 13793-13805 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-13793


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 328(10), 846–866 (1907). [CrossRef]
  2. A. Sommerfeld, “Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes,” Ann. Phys. 67, 233–290 (1899).
  3. A. Sommerfeld, “Über die Ausbreitlung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 28(4), 665–736 (1909). [CrossRef]
  4. H. M. Barlow and A. L. Cullen, “Surface waves,”Proc. IEE 100, 329–347 (1953).
  5. C. C. Cutler, “Genesis of the corrugated electromagnetic surface (corrugated wave-guide),”IEEE Antennas and Propagation Society International Symposium 3, 1456–1459 (1994).
  6. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  7. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005). [CrossRef] [PubMed]
  8. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006). [CrossRef] [PubMed]
  9. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008). [CrossRef] [PubMed]
  10. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yabolonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999). [CrossRef]
  11. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009). [CrossRef] [PubMed]
  12. D. M. Pozar, Microwave Engineering, (John Wiley and Sons Inc., 2005)
  13. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  14. C. C. Chen, “Diffraction of electromagnetic waves by a conducting screen perforated periodically with circular holes,” IEEE Trans. Microw. Theory Tech. 19(5), 475–481 (1971). [CrossRef]
  15. R. Ulrich and M. Tacke, “Submillimeter waveguiding on periodic metallic structure,” Appl. Phys. Lett. 22(5), 251–253 (1973). [CrossRef]
  16. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays on Cr films,” J. Opt. Soc. Am. B 16(10), 1743–1748 (1999). [CrossRef]
  17. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000). [CrossRef]
  18. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001). [CrossRef]
  19. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  20. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29(21), 2500–2502 (2004). [CrossRef] [PubMed]
  21. B. Hou, Z. H. Hang, W. J. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006). [CrossRef]
  22. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009). [CrossRef] [PubMed]
  23. M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Wirel. Compon. Lett. 15(2), 116–118 (2005). [CrossRef]
  24. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]
  25. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998). [CrossRef]
  26. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000). [CrossRef]
  27. A. A. Kirilenko and A. O. Perov, “On the common nature of the enhanced and resonance transmission through the periodical set of holes,” IEEE Trans. Antenn. Propag. 56(10), 3210–3216 (2008). [CrossRef]
  28. V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005). [CrossRef]
  29. J. R. Suckling, J. R. Sambles, and C. R. Lawrence, “Resonant transmission of microwaves through a hexagonal array of holes in a thin metal layer,” N. J. Phys. 9(4), 101 (2007). [CrossRef]
  30. R. C. McPhedran, G. H. Derrick, and L. C. Botten, Electromagnetic Theory of Gratings, (Springer-Verlag, 1980)
  31. E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78(23), 235426 (2008). [CrossRef]
  32. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surface with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005). [CrossRef]
  33. HFSS, Ansoft Corporation, Pittsburgh, PA, USA.
  34. J. D. Edmunds, M. C. Taylor, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Babinet’s principle and the band structure of surface waves on patterned metal arrays,” J. Appl. Phys. 107(10), 103108 (2010). [CrossRef]
  35. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004). [CrossRef] [PubMed]
  36. S. Collin, C. Sauvan, C. Billaudeau, F. Pardo, J. Rodier, J. Pelouard, and P. Lalanne, “Surface modes on nanostructured metallic surfaces,” Phys. Rev. B 79(16), 165405 (2009). [CrossRef]
  37. J. Bravo-Abad, L. Martín-Moreno, F. J. García-Vidal, E. Hendry, and J. Gómez-Rivas, “Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76(24), 241102 (2007). [CrossRef]
  38. G. Xiao and H. Yang, “The effect of array periodicity on the filtering characteristics of metal/dielectric photonic crystals,” J. Semicond. 32(4), 044004 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited