OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 13862–13872

Minimum Description Length approach for unsupervised spectral unmixing of multiple interfering gas species

Julien Fade, Sidonie Lefebvre, and Nicolas Cézard  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 13862-13872 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (950 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We address an original statistical method for unsupervised identification and concentration estimation of spectrally interfering gas components of unknown nature and number. We show that such spectral unmixing can be efficiently achieved using information criteria derived from the Minimum Description Length (MDL) principle, outperforming standard information criteria such as AICc or BIC. In the context of spectroscopic applications, we also show that the most efficient MDL technique implemented shows good robustness to experimental artifacts.

© 2011 OSA

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.0300) Spectroscopy : Spectroscopy
(010.1030) Atmospheric and oceanic optics : Absorption
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:

Original Manuscript: March 31, 2011
Revised Manuscript: May 6, 2011
Manuscript Accepted: May 9, 2011
Published: July 6, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Julien Fade, Sidonie Lefebvre, and Nicolas Cézard, "Minimum description length approach for unsupervised spectral unmixing of multiple interfering gas species," Opt. Express 19, 13862-13872 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Weibring, C. Abrahamsson, M. Sjholm, J. N. Smith, H. Edner, and S. Svanberg, “Multi-component chemical analysis of gas mixtures using a continuously tuneable lidar system,” Appl. Phys. B 79, 525–530 (2004). [CrossRef]
  2. J. R. Quagliano, P. O. Stoutland, R. R. Petrin, R. K. Sander, R. J. Romero, M. C. Whitehead, C. R. Quick, J. J. Tiee, and L. J. Jolin, “Quantitative chemical identification of four gases in remote infrared (9–11μm) differential absorption lidar experiments,” Appl. Opt. 36, 1915–1927 (1997). [CrossRef] [PubMed]
  3. G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008). [CrossRef]
  4. U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy (Springer, 2008).
  5. R. A. Hashmonay, R. M. Varma, M. Modrak, R. H. Kagann, and P. D. Sullivan, “Simultaneous measurement of vaporous and aerosolized threats by active open path FTIR,” Unclassified Technical Report ADA449529, Arcadis Geraghty and Miller Research, Triangle Park, NC (2004).
  6. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. André, A. Mysyrowicz, R. Sauerbrey, J. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003). [CrossRef] [PubMed]
  7. D. M. Brown, K. Shi, Z. Liu, and C. R. Philbrick, “Long-path supercontinuum absorption spectroscopy for measurement of atmospheric constituents,” Opt. Express 16, 8457–8471 (2008). [CrossRef] [PubMed]
  8. P. S. Edwards, A. M. Wyant, D. M. Brown, Z. Liu, and C. R. Philbrick, “Supercontinuum laser sensing of atmospheric constituents,” Proc. SPIE 7323, 73230S (2009). [CrossRef]
  9. E. R. Warren, “Optimum detection of multiple vapor materials with frequency-agile lidar,” Appl. Opt. 35, 4180–4193 (1996). [CrossRef] [PubMed]
  10. S. Yin and W. Wang, “Novel algorithm for simultaneously detecting multiple vapor materials with multiple-wavelength differential absorption lidar,” Chin. Opt. Lett. 4, 360–363 (2006).
  11. J. Fade and N. Cézard, “Supercontinuum lidar absorption spectroscopy for gas detection and concentration estimation,” in Proceedings of the 25th International Laser and Remote-sensing Conference , (2010), pp. 798–801.
  12. J. Rissanen, Information and Complexity in Statistical Modeling (Springer, 2007).
  13. R. A. Stine, “Model selection using information theory and the MDL principle,” Sociolog. Methods Res. 33, 230–260 (2004). [CrossRef]
  14. C. D. Giurcaneanu, “Stochastic complexity for the detection of periodically expressed genes,” in Proceedings of the IEEE International Workshop on Genomic Signal Processing and Statistics , (2007), pp. 1–4. [CrossRef]
  15. H. Chen, T. Kirubarajan, Y. Bar-Shalom, and K. R. Pattipati, “MDL approach for multiple low-observable track initiation,” Proc. SPIE 4728, 477–488 (2002). [CrossRef]
  16. M. Hansen and B. Yu, “Model selection and the principle of minimum description length,” J. Am. Stat. Assoc. 96, 746–774 (2001). [CrossRef]
  17. C. L. Mallows, “Some comments on cp,” Technometrics 15, 661–675 (1973). [CrossRef]
  18. H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Autom. Control 19, 716–723 (1974). [CrossRef]
  19. G. Schwartz, “Estimating the dimension of a model,” Ann. Stat. 9, 461–464 (1978). [CrossRef]
  20. D. P. Foster and E. I. G., “The risk inflation criterion for multiple regression,” Ann. Stat. 22, 1947–1975 (1994). [CrossRef]
  21. J. Rissanen, Stochastic Complexity in Statistical Inquiry, Series in Computer Science (World Scientific, 1989), Vol. 15.
  22. J. Rissanen, “Fisher information and stochastic complexity,” IEEE Trans. Inf. Theory 42, 48–54 (1996). [CrossRef]
  23. M. Duhant, W. Renard, G. Canat, F. Smektala, J. Troles, P. Bourdon, and C. Planchat, “Improving mid-infrared supercontinuum generation efficiency by pumping a fluoride fiber directly into the anomalous regime at 1995 nm,” in CLEO/Europe and EQEC 2011 Conference Digest, (2011), p. CD9_1. (to be published)
  24. A. Berrou, M. Raybaut, A. Godard, and M. Lefebvre, “High-resolution photoacoustic and direct absorption spectroscopy of main greenhouse gases by use of a pulsed entangled cavity doubly resonant OPO,” Appl. Phys. B 98, 217–230 (2010). [CrossRef]
  25. R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R. Stat. Soc. Ser. B 58, 267–288 (1996).
  26. E. J. Candès and Y. Plan, “Near-ideal model selection by ℓ1 minimization,” Ann. Stat. 37, 2145–2177 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited