OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 13980–13988

Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber

Mikhail Erdmanis, Diana Viegas, Markus Hautakorpi, Steffen Novotny, José Luis Santos, and Hanne Ludvigsen  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 13980-13988 (2011)
http://dx.doi.org/10.1364/OE.19.013980


View Full Text Article

Enhanced HTML    Acrobat PDF (1539 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present and numerically characterize a surface-plasmon-resonance sensor based on an H-shaped optical fiber. In our design, the two U-shaped grooves of the H-fiber are first coated with a thin gold layer and then covered by a uniform titanium dioxide layer to facilitate spectral tuning of the device. A finite element method analysis of the sensor indicates that a refractive-index resolution of up to 5 · 103 nm/RIU can be obtained.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 21, 2011
Revised Manuscript: June 16, 2011
Manuscript Accepted: June 17, 2011
Published: July 7, 2011

Citation
Mikhail Erdmanis, Diana Viegas, Markus Hautakorpi, Steffen Novotny, José Luis Santos, and Hanne Ludvigsen, "Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber," Opt. Express 19, 13980-13988 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-13980


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968). [CrossRef]
  3. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135–2136 (1968).
  4. M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiment,” Plasmonics 3, 49–57 (2008). [CrossRef]
  5. B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sensors 2009 (2009).
  6. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009). [CrossRef]
  7. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004). [CrossRef]
  8. O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008). [CrossRef]
  9. M. Skorobogatiy, “Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors,” J. Sensors 2009, 524237 (2009).
  10. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  11. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008). [CrossRef] [PubMed]
  12. A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010). [CrossRef] [PubMed]
  13. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15, 11843–11848 (2007). [CrossRef] [PubMed]
  14. A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34, 3890–3892 (2009). [CrossRef] [PubMed]
  15. H.-J. Kim, O.-J. Kown, S. B. Lee, and Y.-G. Han, “Measurement of temperature and refractive index based on surface long-period gratings deposited onto a D-shaped photonic crystal fiber,” Appl. Phys. B 102, 81–85 (2011). [CrossRef]
  16. T. Allsop, R. Neal, C. Mou, P. Brown, S. Rehman, K. Kalli, D. J. Webb, D. Mapps, and I. Bennion, “Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing,” Opt. Fiber Technol. 15, 477–482 (2009). [CrossRef]
  17. N. Díaz-Herrera, O. Esteban, M.-C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011). [CrossRef]
  18. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35, 637–639 (2010). [CrossRef] [PubMed]
  19. O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett. 34, 76–78 (2009). [CrossRef]
  20. D. Viegas, M. Hautakorpi, A. Guerreiro, J. L. Santos, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on H-shaped optical fibre,” in “Fourth European Workshop on Optical Fibre Sensors ,” J. M. L.-H. J. L. Santos, B. Culshaw, and W. N. MacPherson, eds. (Proc. SPIE, 2010), 7653.
  21. M.-C. Navarrete, N. Diaz-Herrera, A. Gonzalez-Cano, and O. Esteban, “A polarization-independent SPR fiber sensor,” Plasmonics 5, 7–12 (2010). [CrossRef]
  22. H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009). [CrossRef] [PubMed]
  23. X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009). [CrossRef]
  24. E. G. Neumann, Single-Mode Fibers: Fundamentals (Springer-Verlag, 1988), p. 88.
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  26. COMSOL, Inc., Burlington, MA., USA, COMSOL Multiphysics . http://www.comsol.com/ .
  27. D. Monzón-Hernández, J. Villatoro, D. Talavera, and D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Appl. Opt. 43, 1216–1220 (2004). [CrossRef] [PubMed]
  28. S. Singh, K. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings: a comparative study,” Sens. Transducers J. 100, 116–124 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited