OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 13989–13999

Timing characterization of 100 GHz passively mode-locked discrete mode laser diodes

David Bitauld, Simon Osborne, and Stephen O’Brien  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 13989-13999 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (957 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the characterization of the timing stability of passively mode-locked discrete mode diode laser sources. These are edge-emitting devices with a spatially varying refractive index profile for spectral filtering. Two devices with a mode-locking frequency of 100 GHz are characterized. The first device is designed to support a comb of six modes and generates near Fourier limited 1.9 ps pulses. The second supports four primary modes resulting in a sinusoidal modulation of the optical intensity. Using a cross-correlation technique, we measured a 20 fs pulse to pulse timing jitter for the first device, while, for the second device, a mode-beating (RF) linewidth of 1 MHz was measured using heterodyne mixing in a semiconductor optical amplifier. Comparison of these results with those obtained for an equivalent Fabry-Perot laser indicates that the spectral filtering mechanism employed does not adversely affect the timing properties of these passively mode-locked devices.

© 2011 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 26, 2011
Revised Manuscript: June 16, 2011
Manuscript Accepted: June 16, 2011
Published: July 7, 2011

David Bitauld, Simon Osborne, and Stephen O’Brien, "Timing characterization of 100 GHz passively mode-locked discrete mode laser diodes," Opt. Express 19, 13989-13999 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Campany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007). [CrossRef]
  2. H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Tech. 24, 4616–4627 (2006). [CrossRef]
  3. G. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007). [CrossRef] [PubMed]
  4. P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, Wangkuen Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Tech. 24, 2701–2719 (2006). [CrossRef]
  5. X. Yi, N. K. Fontaine, R. P. Scott, and S. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Tech. 28, 2054–2061 (2010). [CrossRef]
  6. A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimter wave signals,” J. Lightwave Tech. 21, 2145–2153 (2003). [CrossRef]
  7. S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightwave Tech. 21, 3043–3051 (2003). [CrossRef]
  8. P. Vasil’ev, Ultrafast Diode Lasers: Fundamentals and Applications (Artech House, 1995).
  9. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-GigaHertz mode-locked semiconductor lasers: constructions, experiments, models and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000). [CrossRef]
  10. C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonic sampling streams from a semiconductor diode ring laser,” IEEE J. Quantum Electron. 38, 380–389 (2002). [CrossRef]
  11. K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004). [CrossRef]
  12. F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11, 103001 (2009). [CrossRef]
  13. L. Hou, M. Haji, J. Akbar, B. Qiu, and A. C. Bryce, “Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers,” Opt. Lett. 36, 966–968 (2011). [CrossRef] [PubMed]
  14. Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58, 1253–1255 (1991). [CrossRef]
  15. J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers, Experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 1, 539–551 (1995). [CrossRef]
  16. T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse modelocked diode lasers,” Electron. Lett. 33, 1868–1869 (1997). [CrossRef]
  17. S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32, 1211–1224 (1996). [CrossRef]
  18. D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors,” IEEE J. Quantum Electron. 38, 1–11 (2002). [CrossRef]
  19. S. O’Brien, S. Osborne, D. Bitauld, and A. Amann, “Design and applications of discrete mode Fabry-Perot diode lasers,” Photonics Nanostruct. Fundam. Appl. 8, 218–227 (2010). [CrossRef]
  20. D. Bitauld, S. Osborne, and S. O’Brien, “Passive harmonic mode-locking by mode selection in Fabry-Perot diode lasers with patterned effective index,” Opt. Lett. 35, 2200–2202 (2010). [CrossRef] [PubMed]
  21. S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010). [CrossRef]
  22. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993). [CrossRef]
  23. D. Eliyahu, R. A. Salvatore, and A. Yariv, “Effect of noise on the power spectrum of passively mode-locked lasers,” J. Opt. Soc. Am. B 14, 167–174 (1997). [CrossRef]
  24. R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004). [CrossRef]
  25. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986). [CrossRef]
  26. L. A. Jiang, S. T. Wong, M. E. Grein, E. P. Ippen, and H. A. Haus, “Measuring timing jitter with optical cross correlations,” IEEE J. Sel. Top. Quantum Electron. 38, 1047–1052 (2002). [CrossRef]
  27. J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006). [CrossRef]
  28. S. Latkowski, R. Maldonado-Basilio, K. Carney, J. Parra-Cetina, S. Philippe, and P. Landais, “Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers,” Appl. Phys. Lett. 97, 081113 (2010). [CrossRef]
  29. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited