OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14040–14050

Cavity formation on an optical nanofiber using focused ion beam milling technique

K. P. Nayak, Fam Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14040-14050 (2011)
http://dx.doi.org/10.1364/OE.19.014040


View Full Text Article

Enhanced HTML    Acrobat PDF (1340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the experimental realization of nanofiber Bragg grating (NFBG) by drilling periodic nano-grooves on a subwavelength-diameter silica fiber using focused ion beam milling technique. Using such NFBG structures we have realized nanofiber cavity systems. The typical finesse of such nanofiber cavity is F ∼ 20 – 120 and the on-resonance transmission is ∼ 30 – 80%. Moreover the structural symmetry of such NFBGs results in polarization-selective modes in the nanofiber cavity. Due to the strong confinement of the field in the guided mode, such a nanofiber cavity can become a promising workbench for cavity QED.

© 2011 OSA

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(140.3945) Lasers and laser optics : Microcavities
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5565) Fiber optics and optical communications : Quantum communications
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 19, 2011
Revised Manuscript: June 18, 2011
Manuscript Accepted: June 20, 2011
Published: July 7, 2011

Citation
K. P. Nayak, Fam Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, "Cavity formation on an optical nanofiber using focused ion beam milling technique," Opt. Express 19, 14040-14050 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14040


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992). [CrossRef] [PubMed]
  2. C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000). [CrossRef] [PubMed]
  3. P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000). [CrossRef] [PubMed]
  4. J. M. Raimond, M. Brune, and S. Haroche, “Colloquium: manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001). [CrossRef]
  5. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef] [PubMed]
  6. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002). [CrossRef] [PubMed]
  7. D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998). [CrossRef]
  8. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003). [CrossRef] [PubMed]
  9. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef] [PubMed]
  10. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006). [CrossRef] [PubMed]
  11. M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Opt. Express 12, 3521–3531 (2004). [CrossRef] [PubMed]
  12. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 6501, 016608 (2002).
  13. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef] [PubMed]
  14. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896–899 (2007). [CrossRef] [PubMed]
  15. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010). [CrossRef] [PubMed]
  16. F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005). [CrossRef]
  17. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, “Optical nanofibers as an efficient tool for probing and manipulating atomic fluorescence,” Opt. Express 15, 5431–5438 (2007). [CrossRef] [PubMed]
  18. K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofibre,” New J. Phys. 10, 053003 (2008). [CrossRef]
  19. F. Le Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A 73, 013819 (2006). [CrossRef]
  20. F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009). [CrossRef]
  21. F. Le Kien and K. Hakuta, “Intracavity electromagnetically induced transparency in atoms around a nanofiber with a pair of Bragg grating mirrors,” Phys. Rev. A 79, 043813 (2009). [CrossRef]
  22. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997). [CrossRef]
  23. R. Kashyap, Fiber Bragg Gratings (Academic Press, 1999).
  24. R. Zhang, X. Zhang, D. Meiser, and H. Giessen, “Mode and group velocity dispersion evolution in the tapered region of a single-mode tapered fiber,” Opt. Express 12, 5840–5849 (2004). [CrossRef] [PubMed]
  25. V. Hodzic, J. Orloff, and C. C. Davis, “Periodic structures on biconically tapered optical fibers using ion beam milling and Boron implantation,” J. Lightwave Technol. 22, 1610–1614 (2004). [CrossRef]
  26. C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Opt. Lett. 32, 1575–1577 (2007). [CrossRef] [PubMed]
  27. A. Yariv, Optical Electronics (CBS College, 1985).
  28. D. Marcuse, Light Transmission Optics (Krieger, 1989).
  29. F. Le Kien, K. P. Nayak, and K. Hakuta, “Nanofibers with Bragg gratings from equidistant holes,” Preprint: arXiv:1103.1789 (2011), http://arxiv.org/abs/1103.1789v1 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited