OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14060–14066

Digital dual-rate burst-mode receiver for 10G and 1G coexistence in optical access networks

José Manuel Delgado Mendinueta, John E. Mitchell, Polina Bayvel, and Benn C. Thomsen  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14060-14066 (2011)
http://dx.doi.org/10.1364/OE.19.014060


View Full Text Article

Enhanced HTML    Acrobat PDF (834 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A digital dual-rate burst-mode receiver, intended to support 10 and 1 Gb/s coexistence in optical access networks, is proposed and experimentally characterized. The receiver employs a standard DC-coupled photoreceiver followed by a 20 GS/s digitizer and the detection of the packet presence and line-rate is implemented in the digital domain. A polyphase, 2 samples-per-bit digital signal processing algorithm is then used for efficient clock and data recovery of the 10/1.25 Gb/s packets. The receiver performance is characterized in terms of sensitivity and dynamic range under burst-mode operation for 10/1.25 Gb/s intensity modulated data in terms of both the packet error rate (PER) and the payload bit error rate (pBER). The impact of packet preamble lengths of 16, 32, 48, and 64 bits, at 10 Gb/s, on the receiver performance is investigated. We show that there is a trade-off between pBER and PER that is limited by electrical noise and digitizer clipping at low and high received powers, respectively, and that a 16/2-bit preamble at 10/1.25 Gb/s is sufficient to reliably detect packets at both line-rates over a burst-to-burst dynamic range of 14,5dB with a sensitivity of −18.5dBm at 10 Gb/s.

© 2011 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(060.4259) Fiber optics and optical communications : Networks, packet-switched

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 26, 2011
Revised Manuscript: June 22, 2011
Manuscript Accepted: June 24, 2011
Published: July 7, 2011

Citation
José Manuel Delgado Mendinueta, John E. Mitchell, Polina Bayvel, and Benn C. Thomsen, "Digital dual-rate burst-mode receiver for 10G and 1G coexistence in optical access networks," Opt. Express 19, 14060-14066 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14060


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Tanaka, A. Agata, and Y. Horiuchi, “IEEE 802.3av 10G-EPON standardization and its research and development status,” J. Lightwave Technol. 28(4), 651–661 (2010). [CrossRef]
  2. P. Ossieur, T. De Ridder, J. Bauwelinck, C. Mélange, B. Baekelandt, X. Qiu, J. Vandewege, G. Talli, C. Antony, P. Townsend, and C. Ford, “A 10 Gb/s burst-mode receiver with automatic reset generation and burst detection for extended reach PONs,” in Proceedings of OFC 2009, paper OWH3 (2009).
  3. J. Sugawa, D. Mashimo, and H. Ikeda, “10.3Gbps burst-mode receiver capable of upstream transmission with short overhead for 10G-EPON,” in Proceedings of ECOC 2010, paper Mo.2.B.4 (2010).
  4. J. Nakagawa, M. Noda, N. Suzuki, S. Yoshima, K. Nakura, and M. Nogami, “First demonstration of 10G-EPON and GE-PON co-existing system employing dual-rate burst-mode 3R transceiver,” in Proceedings of OFC 2010, paper PDPD10 (2010).
  5. J. M. Delgado Mendinueta, J. E. Mitchell, P. Bayvel, and B. C. Thomsen, “Digital multi-rate receiver for 10GE-PON and GE-PON coexistence,” in Proceedings of OFC 2011, paper NTuD4 (2011).
  6. L. Erup, F. M. Gardner, and R. A. Harris, “Interpolation in digital modems. Part II: implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993). [CrossRef]
  7. S. J. Lee, “A new non-data-aided feedforward symbol timing estimator using two samples per symbol,” IEEE Commun. Lett. 6(5), 205–207 (2002). [CrossRef]
  8. M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988). [CrossRef]
  9. B. C. Thomsen, B. J. Puttnam, and P. Bayvel, “Optically equalized 10 Gb/s NRZ digital burstmode receiver for dynamic optical networks,” Opt. Express 15(15), 9520–9526 (2007). [CrossRef] [PubMed]
  10. J. M. Delgado Mendinueta, P. Bayvel, and B. C. Thomsen, “Digital lightwave receivers: an experimentally validated system model,” IEEE Photon. Technol. Lett. 23(6), 338–340 (2011). [CrossRef]
  11. G. P. Agrawal, Fiber Optic Communication Systems, 3rd ed. (Wiley, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited