OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14067–14075

Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement

L.B. Guo, W. Hu, B.Y. Zhang, X.N. He, C.M. Li, Y.S. Zhou, Z.X. Cai, X.Y. Zeng, and Y.F. Lu  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14067-14075 (2011)
http://dx.doi.org/10.1364/OE.19.014067


View Full Text Article

Enhanced HTML    Acrobat PDF (1359 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To enhance optical emission in laser-induced breakdown spectroscopy, both a pair of permanent magnets and an aluminum hemispherical cavity (diameter: 11.1 mm) were used simultaneously to magnetically and spatially confine plasmas produced by a KrF excimer laser in air from pure metal and alloyed samples. High enhancement factors of about 22 and 24 in the emission intensity of Co and Cr lines were acquired at a laser fluence of 6.2 J/cm2 using the combined confinement, while enhancement factors of only about 11 and 12 were obtained just with a cavity. The mechanism of enhanced optical emission by combined confinement, including shock wave in the presence of a magnetic field, is discussed. The Si plasmas, however, were not influenced by the presence of magnets as Si is hard to ablate and ionize and hence has less free electrons and positive ions. Images of the laser-induced Cr and Si plasmas show the difference between pure metallic and semiconductor materials in the presence of both a cavity and magnets.

© 2011 OSA

OCIS Codes
(350.5400) Other areas of optics : Plasmas
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Spectroscopy

History
Original Manuscript: June 3, 2011
Revised Manuscript: June 25, 2011
Manuscript Accepted: June 27, 2011
Published: July 7, 2011

Citation
L.B. Guo, W. Hu, B.Y. Zhang, X.N. He, C.M. Li, Y.S. Zhou, Z.X. Cai, X.Y. Zeng, and Y.F. Lu, "Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement," Opt. Express 19, 14067-14075 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14067


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B. 60(7-8), 1132–1139 (2005). [CrossRef]
  2. L. J. Radziemski and D. A. Cremers, Laser Induced Plasma and Applications (Marcel Dekker, New York, 1989).
  3. H. Zhang, F. Y. Yueh, and J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous-emission monitor,” Appl. Opt. 38(9), 1459–1466 (1999). [CrossRef] [PubMed]
  4. J. P. Singh and S. N. Thakur, Laser-Induced breakdown Spectroscopy (Elsevier Science, Oxford, 2007).
  5. Yu. P. Razier, Laser-Induced Discharge Phenomena (Consultants Bureau New York, 1977).
  6. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for Application to Space Exploration,” Appl. Spectrosc. 54(3), 331–340 (2000). [CrossRef]
  7. G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, “Trace element analysis in water by the laser-induced breakdown spectroscopy techinique,” Appl. Spectrosc. 51(8), 1102–1105 (1997). [CrossRef]
  8. T. X. Phuoc and F. P. White, “Laser induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81(13), 1761–1765 (2002). [CrossRef]
  9. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38(5), 721–729 (1984). [CrossRef]
  10. D. Anglos, V. Zafiropulos, K. Melessanaki, M. J. Gresalfi, and J. C. Miller, “Laser-induced breakdown spectroscopy for the analyses of 150-year old daguerreotypes,” Appl. Spectrosc. 56(4), 423–432 (2002). [CrossRef]
  11. A.W. Miziolect, V. Palleschi and I. Schechter eds., Laser-Induced Breakdown Spectroscopy (LIBS) - Fundamentals and Applications (Cambridge University Press, Cambridge, 2006).
  12. D. A. Cremers and L. J. Radzeimki, Handbook of Laser Induced Breakdown Spectroscopy (Wiley, 2006).
  13. D. N. Stratis, K. L. Eland, and S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54(12), 1719–1726 (2000). [CrossRef]
  14. J. Scaffidi, W. Pearman, J. C. Carter, and S. M. Angel, “Observations in collinear femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Spectrosc. 60(1), 65–71 (2006). [CrossRef] [PubMed]
  15. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42(30), 6099–6106 (2003). [CrossRef] [PubMed]
  16. R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002). [CrossRef]
  17. X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, “Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 48(13), 2551–2558 (2009). [CrossRef] [PubMed]
  18. X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011). [CrossRef] [PubMed]
  19. H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000). [CrossRef]
  20. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007). [CrossRef]
  21. A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602 (2009). [CrossRef]
  22. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010). [CrossRef]
  23. L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011). [CrossRef]
  24. V. N. Rai, A. K. Rai, F. Y. Yueh, and J. P. Singh, “Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field,” Appl. Opt. 42(12), 2085–2093 (2003). [CrossRef] [PubMed]
  25. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Cleaver Hume, London, 1959).
  26. V. N. Rai, M. Shukla, and H. C. Pant, “An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma,” Pramana J. Phys. 52(1), 49–65 (1999). [CrossRef]
  27. F. F. Chen, Introduction to Plasma Physics (Plenum, New York, 1974).
  28. V. N. Rai, A. K. Rai, F. Y. Yueh, and J. P. Singh, “Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field,” Appl. Opt. 42(12), 2085–2093 (2003). [CrossRef] [PubMed]
  29. X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006). [CrossRef]
  30. G. Han and P. T. Murray, “Laser-plasma interactions in 532 nm ablation of Si,” J. Appl. Phys. 88(2), 1184–1186 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited