OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14076–14082

Wavelength encoding technique for particle analyses in hematology analyzer

Nelly Rongeat, Patrick Brunel, Jean-Philippe Gineys, Didier Cremien, Vincent Couderc, and Philippe Nérin  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14076-14082 (2011)
http://dx.doi.org/10.1364/OE.19.014076


View Full Text Article

Enhanced HTML    Acrobat PDF (1051 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The aim of this study is to combine multiple excitation wavelengths in order to improve accuracy of fluorescence characterization of labeled cells. The experimental demonstration is realized with a hematology analyzer based on flow cytometry and a CW laser source emitting two visible wavelengths. A given optical encoding associated to each wavelength allows fluorescence identification coming from specific fluorochromes and avoiding the use of noisy compensation method.

© 2011 OSA

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.2540) Materials : Fluorescent and luminescent materials
(170.1530) Medical optics and biotechnology : Cell analysis
(170.4090) Medical optics and biotechnology : Modulation techniques
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(260.2510) Physical optics : Fluorescence

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 18, 2011
Revised Manuscript: April 29, 2011
Manuscript Accepted: May 10, 2011
Published: July 8, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Nelly Rongeat, Patrick Brunel, Jean-Philippe Gineys, Didier Cremien, Vincent Couderc, and Philippe Nérin, "Wavelength encoding technique for particle analyses in hematology analyzer," Opt. Express 19, 14076-14082 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14076


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. M. Shapiro, Practical Flow Cytometry, 2nd ed. (A. R. Liss, Inc., 1988).
  2. F. E. Craig and K. A. Foon, “Flow cytometric immunophenotyping for hematologic neoplasms,” Blood 111(8), 3941–3967 (2008). [CrossRef] [PubMed]
  3. J. L. Faucher, C. Lacronique-Gazaille, E. Frébet, F. Trimoreau, M. Donnard, D. Bordessoule, F. Lacombe, and J. Feuillard, ““6 markers/5 colors” extended white blood cell differential by flow cytometry,” Cytometry A 71A(11), 934–944 (2007). [CrossRef] [PubMed]
  4. C. Arnoulet, M. C. Béné, F. Durrieu, J. Feuillard, C. Fossat, B. Husson, H. Jouault, M. Maynadié, and F. Lacombe, “Four- and five-color flow cytometry analysis of leukocyte differentiation pathways in normal bone marrow: a reference document based on a systematic approach by the GTLLF and GEIL,” Cytometry B Clin. Cytom. 78(1), 4–10 (2010). [PubMed]
  5. C. C. Stewart and S. J. Stewart, “Four color compensation,” Cytometry B 38(4), 161–175 (1999). [CrossRef]
  6. M. Roederer, “Spectral compensation for flow cytometry: visualization artefacts, limitations and caveats,” Cytometry A 45(3), 194–205 (2001). [CrossRef]
  7. P. Nérin and D. Lefevre, “Device and method for multiparametric analysis of microscopic elements,” U.S. patent 7,777,869 (14 April 2006).
  8. R. Kapoor and M. Casstevens, “Evaluation of multicomponent mixtures using modulated light beam,” U.S. 2007/0096039 A1 (14 April 2006).
  9. G. Durack and J. Hatcher, “System and method for the measurement of multiple fluorescence emissions in a flow cytometry system,” U.S. patent 2008/0213915 A1 (23 April 2007).
  10. K. Luong, P. Lundquist, R. Dalal, J. Lyle, and S. Turner, “Methods and systems for analysis of fluorescent reactions with modulated excitation,” CA patent 2711560 A1 (9 January 2009).
  11. D. Jameson, E. Gratton, and R. Hall, “The measurement and analysis of heterogenous emissions by multifrequency phase and modulation fluorometry,” Appl. Spectrosc. Rev. 20(1), 55–106 (1984). [CrossRef]
  12. G. Durack and J. P. Robinson, Emerging Tools for Single-Cell Analysis: Advances in Optical Measurement Technologies, ed. (Wiley-Liss., 2000).
  13. N. Åslund and K. Carlsson, “Confocal scanning microfluorometry of dual-labelled specimens using two excitation wavelengths and lock-in detection technique,” Micron 24(6), 603–609 (1993). [CrossRef]
  14. S. W. Lin, C. H. Chang, D. Y. Wu, and C. H. Lin, “Digitally synchronized LCD projector for multi-color fluorescence excitation in parallel capillary electrophoresis detection,” Biosens. Bioelectron. 26(2), 717–722 (2010). [CrossRef] [PubMed]
  15. A. D. Donnenberg and V. S. Donnenberg, “Configuration of initial control parameters in photodetectors for multi-color flow cytometry,” U.S. patent 2010/0256943 A1 (1 April 2010).
  16. M. Dinkelmann and C. Rogers, “Expanding fluorescence detection options with the accuri C6 flow cytometer system,” Nat. Meth. 7, ••• (2010).
  17. K. Mossberg and M. Ericsson, “Detection of doubly stained fluorescent specimens using confocal microscopy,” J. Microsc. 158(Pt 2), 215–224 (1990). [CrossRef] [PubMed]
  18. X. Wang and I. Kurtz, “H+/base transport in principal cells characterized by confocal fluorescence imaging,” Am. J. Physiol. 259(2 Pt 1), C365–C373 (1990). [PubMed]
  19. F. De Bisshop, “Electronic gating for particle/cell counting and sizing, DSP-operated,” IEEE Trans. Instrum. Meas. 58(9), 3159–3166 (2009). [CrossRef]
  20. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO(2)-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009). [CrossRef] [PubMed]
  21. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “Toward visible cw-pumped supercontinua,” Opt. Lett. 33(18), 2122–2124 (2008). [CrossRef] [PubMed]
  22. J. C. Travers, R. E. Kennedy, S. V. Popov, J. R. Taylor, H. Sabert, and B. Mangan, “Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber,” Opt. Lett. 30(15), 1938–1940 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited