OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14321–14334

In situ tomography of femtosecond optical beams with a holographic knife-edge

J. Strohaber, G. Kaya, N. Kaya, N. Hart, A. A. Kolomenskii, G. G. Paulus, and H. A. Schuessler  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14321-14334 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1902 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an in situ beam characterization technique to analyze femtosecond optical beams in a folded version of a 2f-2f setup. This technique makes use of a two-dimensional spatial light modulator (SLM) to holographically redirect radiation between different diffraction orders. This manipulation of light between diffraction orders is carried out locally within the beam. Because SLMs can withstand intensities of up to I 10 11 W/cm 2 , this makes them suitable for amplified femtosecond radiation. The flexibility of the SLM was demonstrated by producing a diverse assortment of “soft apertures” that are mechanically difficult or impossible to reproduce. We test our method by holographically knife-edging and tomographically reconstructing both continuous wave and broadband radiation in transverse optical modes.

© 2011 OSA

OCIS Codes
(050.1590) Diffraction and gratings : Chirping
(050.1950) Diffraction and gratings : Diffraction gratings
(090.1760) Holography : Computer holography
(140.3300) Lasers and laser optics : Laser beam shaping
(320.7090) Ultrafast optics : Ultrafast lasers
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

Original Manuscript: April 19, 2011
Revised Manuscript: July 2, 2011
Manuscript Accepted: July 2, 2011
Published: July 12, 2011

J. Strohaber, G. Kaya, N. Kaya, N. Hart, A. A. Kolomenskii, G. G. Paulus, and H. A. Schuessler, "In situ tomography of femtosecond optical beams with a holographic knife-edge," Opt. Express 19, 14321-14334 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Babiker, W. L. Power, and L. Allen, “Light-induced torque on moving atoms,” Phys. Rev. Lett. 73(9), 1239–1242 (1994). [CrossRef] [PubMed]
  2. A. Picón, J. Mompart, J. R. Vázquez de Aldana, L. Plaja, G. F. Calvo, and L. Roso, “Photoionization with orbital angular momentum beams,” Opt. Express 18(4), 3660–3671 (2010). [CrossRef] [PubMed]
  3. A. Alexandrescu, D. Cojoc, and E. Di Fabrizio, “Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams,” Phys. Rev. Lett. 96(24), 243001 (2006). [CrossRef] [PubMed]
  4. E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010). [CrossRef] [PubMed]
  5. J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006). [CrossRef] [PubMed]
  6. J. Y. Vinet, “Thermal noise in advanced gravitational wave interferometer antennas: A comparison between arbitrary order Hermite and Laguerre Gasussian modes,” Phys. Rev. D Part. Fields Gravit. Cosmol. 82(4), 042003 (2010). [CrossRef]
  7. L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96(13), 133901 (2006). [CrossRef] [PubMed]
  8. J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104(10), 103601 (2010). [CrossRef] [PubMed]
  9. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince-Gaussian beams,” Opt. Lett. 29(2), 144–146 (2004). [CrossRef] [PubMed]
  10. J. Strohaber, C. Petersen, and C. J. G. J. Uiterwaal, “Efficient angular dispersion compensation in holographic generation of intense ultrashort paraxial beam modes,” Opt. Lett. 32(16), 2387–2389 (2007). [CrossRef] [PubMed]
  11. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Laser beams: knotted threads of darkness,” Nature 432(7014), 165 (2004). [CrossRef] [PubMed]
  12. K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, and H. Walther, “Vortices in femtosecond laser fields,” Opt. Lett. 29(16), 1942–1944 (2004). [CrossRef] [PubMed]
  13. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13(19), 7599–7608 (2005). [CrossRef] [PubMed]
  14. I. Zeylikovich, H. I. Sztul, V. Kartazaev, T. Le, and R. R. Alfano, “Ultrashort Laguerre-Gaussian pulses with angular and group velocity dispersion compensation,” Opt. Lett. 32(14), 2025–2027 (2007). [CrossRef] [PubMed]
  15. J. Strohaber, T. D. Scarborough, and C. J. G. J. Uiterwaal, “Ultrashort intense-field optical vortices produced with laser-etched mirrors,” Appl. Opt. 46(36), 8583–8590 (2007). [CrossRef] [PubMed]
  16. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999). [CrossRef] [PubMed]
  17. J. B. Bentley, J. A. Davis, M. A. Bandres, and J. C. Gutiérrez-Vega, “Generation of helical Ince-Gaussian beams with a liquid-crystal display,” Opt. Lett. 31(5), 649–651 (2006). [CrossRef] [PubMed]
  18. J.W. Goodman, Introduction to Fourier Optics, 2nd Ed. (McGraw-Hill,New York, l996).
  19. J. F. James, A Student’s Guide tothe Fourier Transform (Cambridge U. Press, 1995).
  20. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22(21), 3406–3410 (1983). [CrossRef] [PubMed]
  21. O. Mendoza-Yero and M. Arronte, “Determination of Hermite Gaussian modes using moving knife-edge,” J. Phys: Conference Series 59, 497–500 (2007). [CrossRef]
  22. J. Soto, M. Rendón, and M. Martín, “Experimental demonstration of tomographic slit technique for measurement of arbitrary intensity profiles of light beams,” Appl. Opt. 36(29), 7450–7454 (1997). [CrossRef] [PubMed]
  23. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light- theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited