OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14348–14353

Mueller matrix differential decomposition for direction reversal: application to samples measured in reflection and backscattering

Noé Ortega-Quijano and José Luis Arce-Diego  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14348-14353 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (893 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mueller matrix differential decomposition is a novel method for analyzing the polarimetric properties of optical samples. It is performed through an eigenanalysis of the Mueller matrix and the subsequent decomposition of the corresponding differential Mueller matrix into the complete set of 16 differential matrices which characterize depolarizing anisotropic media. The method has been proposed so far only for measurements in transmission configuration. In this work the method is extended to the backward direction. The modifications of the differential matrices according to the reference system are discussed. The method is successfully applied to Mueller matrices measured in reflection and backscattering.

© 2011 OSA

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 3, 2011
Revised Manuscript: May 31, 2011
Manuscript Accepted: May 31, 2011
Published: July 12, 2011

Noé Ortega-Quijano and José Luis Arce-Diego, "Mueller matrix differential decomposition for direction reversal: application to samples measured in reflection and backscattering," Opt. Express 19, 14348-14353 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. A. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4x4 matrix calculus,” J. Opt. Soc. Am. 68(12), 1756–1767 (1978). [CrossRef]
  2. N. Ortega-Quijano and J. L. Arce-Diego, “Depolarizing differential Mueller matrices,” Opt. Lett. 36 (in press). [PubMed]
  3. N. Ortega-Quijano and J. L. Arce-Diego, “Mueller matrix differential decomposition,” Opt. Lett. 36(10), 1942–1944 (2011). [CrossRef] [PubMed]
  4. N. Ortega-Quijano, F. Fanjul-Vélez, I. Salas-García, and J. L. Arce-Diego, “Comparative study of optical activity in chiral biological media by polar decomposition and differential Mueller matrices analysis,” Proc. SPIE 7906, 790612, 790612-6 (2011). [CrossRef]
  5. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, 1990).
  6. N. C. Pistoni, “Simplified approach to the Jones calculus in retracing optical circuits,” Appl. Opt. 34(34), 7870–7876 (1995). [CrossRef] [PubMed]
  7. F. Boulvert, G. Le Brun, B. Le Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282(5), 692–704 (2009). [CrossRef]
  8. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996). [CrossRef]
  9. J. Morio and F. Goudail, “Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices,” Opt. Lett. 29(19), 2234–2236 (2004). [CrossRef] [PubMed]
  10. M. W. Williams, “Depolarization and cross polarization in ellipsometry of rough surfaces,” Appl. Opt. 25(20), 3616–3622 (1986). [CrossRef] [PubMed]
  11. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14(1), 190–202 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited