OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14370–14388

The single quantum dot-laser: lasing and strong coupling in the high-excitation regime

Christopher Gies, Matthias Florian, Paul Gartner, and Frank Jahnke  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14370-14388 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The emission properties of a single quantum dot in a microcavity are studied on the basis of a semiconductor model. As a function of the pump rate of the system we investigate the onset of stimulated emission, the possibility to realize stimulated emission in the strong-coupling regime, as well as the excitation-dependent changes of the photon statistics and the emission spectrum. The role of possible excited charged and multi-exciton states, the different sources of dephasing for various quantum-dot transitions, and the influence of background emission into the cavity mode are analyzed in detail. In the strong coupling regime, the emission spectrum can contain a line at the cavity resonance in addition to the vacuum doublet caused by off-resonant transitions of the same quantum dot. If strong coupling persists in the regime of stimulated emission, the emission spectrum near the cavity resonance additionally grows due to broadened contributions from higher rungs of the Jaynes-Cummings ladder.

© 2011 OSA

OCIS Codes
(270.5290) Quantum optics : Photon statistics
(130.3990) Integrated optics : Micro-optical devices
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: May 12, 2011
Revised Manuscript: June 20, 2011
Manuscript Accepted: June 22, 2011
Published: July 12, 2011

Christopher Gies, Matthias Florian, Paul Gartner, and Frank Jahnke, "The single quantum dot-laser: lasing and strong coupling in the high-excitation regime," Opt. Express 19, 14370-14388 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000). [CrossRef] [PubMed]
  2. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002). [CrossRef] [PubMed]
  3. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009). [CrossRef]
  4. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010). [CrossRef]
  5. C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchi, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010). [CrossRef] [PubMed]
  6. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
  7. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006). [CrossRef]
  8. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006). [CrossRef] [PubMed]
  9. S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007). [CrossRef] [PubMed]
  10. J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009). [CrossRef] [PubMed]
  11. Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007). [CrossRef] [PubMed]
  12. S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008). [CrossRef] [PubMed]
  13. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17, 15975–15982 (2009). [CrossRef] [PubMed]
  14. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot nanocavity system,” Nat. Phys. 6, 279–283 (2010). [CrossRef]
  15. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004). [CrossRef] [PubMed]
  16. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef] [PubMed]
  17. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999). [CrossRef]
  18. J. I. Cirac, H. Ritsch, and P. Zoller, “Two-level system interacting with a finite-bandwidth thermal cavity mode,” Phys. Rev. A 44, 4541–4551 (1991). [CrossRef] [PubMed]
  19. E. del Valle, F. P. Laussy, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. ii.) Fermions,” Phys. Rev. B 79, 235326 (2009). [CrossRef]
  20. J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system,” Nat. Mater. 9, 304–308 (2010). [CrossRef] [PubMed]
  21. Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A 46, 5944–5954 (1992). [CrossRef] [PubMed]
  22. A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81, 245419 (2010). [CrossRef]
  23. S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statisticsof a single quantum dot laser,” Opt. Express 18, 9909–9921 (2010). [CrossRef] [PubMed]
  24. T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in InGaAs/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998). [CrossRef]
  25. H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80, 235319 (2009). [CrossRef]
  26. U. Bockelmann and T. Egeler, “Electron relaxation in quantum dots by means of Auger processes,” Phys. Rev. B 46, 15574 (1992). [CrossRef]
  27. T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004). [CrossRef]
  28. J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum-dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327 (2005). [CrossRef]
  29. H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, 1998).
  30. K. Matsuda, K. Ikeda, T. Saiki, H. Saito, and K. Nishi, “Carrier-carrier interaction in single In0.5Ga0.5As quantum dots at room temperature investigated by near-field scanning optical microscope,” Appl. Phys. Lett. 83, 2250–2252 (2003). [CrossRef]
  31. C. Santori, G. S. Solomon, M. Pelton, and Y. Yamamoto, “Time-resolved spectroscopy of multiexcitonic decay in an InAs quantum dot,” Phys. Rev. B 65, 073310 (2002). [CrossRef]
  32. A. Laucht, M. Kaniber, A. Mohtashami, N. Hauke, M. Bichler, and J. J. Finley, “Temporal monitoring of non-resonant feeding of semiconductor nanocavity modes by quantum dot multiexciton transitions,” Phys. Rev. B 81, 241302 (2010). [CrossRef]
  33. M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamođlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 226808 (2008). [CrossRef] [PubMed]
  34. F. Jahnke, ed., Quantum Optics with Semiconductor Nanostructures (Woodhead Publishing, to be published).
  35. S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photonics Rev. 5, n/a. doi: (2011). [CrossRef]
  36. P. Zoller and C. Gardiner, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 3rd ed. (Springer-Verlag, 2004). [PubMed]
  37. S. Hughes and P. Yao, “Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system,” Opt. Express 17, 3322–3330 (2009). [CrossRef] [PubMed]
  38. M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, “Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot,” Phys. Rev. B 80, 155326 (2009). [CrossRef]
  39. A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited ingaas quantum dots in gaas nanocavities,” Phys. Rev. Lett. 103, 087405 (2009). [CrossRef] [PubMed]
  40. A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010). [CrossRef]
  41. F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008). [CrossRef] [PubMed]
  42. M. Scully and W. Lamb, “Quantum theory of an optical maser. I. General theory,” Phys. Rev. 159, 208–226 (1967). [CrossRef]
  43. S. Stenholm, “Quantum theory of electromagnetic fields interacting with atoms and molecules,” Phys. Rep. 6, 1–121 (1973). [CrossRef]
  44. D. Walls and G. Milburn, Quantum Optics (Springer, 1994).
  45. N. Baer, P. Gartner, and F. Jahnke, “Coulomb effects in semiconductor quantum dots,” Eur. Phys. J. B 42, 231–237 (2004). [CrossRef]
  46. C. Gies, M. Florian, P. Gartner, and F. Jahnke, “A semiconductor model for the single quantum dot laser,” Phys. Status Solidi B 248, 879–882 (2011). [CrossRef]
  47. P. Hawrylak, “Excitonic artificial atoms: Engineering optical properties of quantum dots,” Phys. Rev. B 60, 5597 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited