OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14518–14525

Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime

Youjian Song, Chur Kim, Kwangyun Jung, Hyoji Kim, and Jungwon Kim  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14518-14525 (2011)
http://dx.doi.org/10.1364/OE.19.014518


View Full Text Article

Enhanced HTML    Acrobat PDF (1302 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate ultra-low timing jitter optical pulse trains from free-running, 80 MHz repetition rate, mode-locked Yb-fiber lasers. Timing jitter of various mode-locking conditions at close-to-zero intracavity dispersion (–0.004 to +0.002 ps2 range at 1040 nm center wavelength) is characterized using a sub-20-attosecond-resolution balanced optical cross-correlation method. The measured lowest rms timing jitter is 175 attoseconds when integrated from 10 kHz to 40 MHz (Nyquist frequency) offset frequency range, which corresponds to the record-low timing jitter from free-running mode-locked fiber lasers so far. We also experimentally found the mode-locking conditions of fiber lasers where both ultra-low timing jitter and relative intensity noise can be achieved.

© 2011 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(320.7090) Ultrafast optics : Ultrafast lasers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 2, 2011
Revised Manuscript: July 7, 2011
Manuscript Accepted: July 7, 2011
Published: July 13, 2011

Citation
Youjian Song, Chur Kim, Kwangyun Jung, Hyoji Kim, and Jungwon Kim, "Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime," Opt. Express 19, 14518-14525 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14518


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008). [CrossRef]
  2. J.-F. Cliché and B. Shillue, “Precision timing control for radioastronomy: maintaining femtosecond synchronization in the Atacama Large Millimeter Array,” IEEE Contr. Syst. Mag. 26(1), 19–26 (2006). [CrossRef]
  3. N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs,” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007). [CrossRef]
  4. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007). [CrossRef] [PubMed]
  5. J. Millo, R. Boudot, M. Lours, P. Y. Bourgeois, A. N. Luiten, Y. Le Coq, Y. Kersalé, and G. Santarelli, “Ultra-low-noise microwave extraction from fiber-based optical frequency comb,” Opt. Lett. 34(23), 3707–3709 (2009). [CrossRef] [PubMed]
  6. J. Kim and F. X. Kärtner, “Microwave signal extraction from femtosecond mode-locked lasers with attosecond relative timing drift,” Opt. Lett. 35(12), 2022–2024 (2010). [CrossRef] [PubMed]
  7. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” arXiv:1101.3613v3 (2011).
  8. R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293(5533), 1286–1289 (2001). [CrossRef] [PubMed]
  9. T. R. Schibli, O. Kuzucu, J.-W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Toward single-cycle laser systems,” IEEE J. Sel. Top. Quantum Electron. 9(4), 990–1001 (2003). [CrossRef]
  10. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993). [CrossRef]
  11. R. Paschotta, “Noise of mode-locked lasers (part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004). [CrossRef]
  12. J. Kim and F. X. Kärtner, “Attosecond-precision ultrafast photonics,” Laser Photonics Rev. 4(3), 432–456 (2010). [CrossRef]
  13. R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001). [CrossRef]
  14. J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter characterization of free-running mode-locked lasers,” Opt. Lett. 32(24), 3519–3521 (2007). [CrossRef] [PubMed]
  15. U. Demirbas, A. Benedick, A. Sennaroglu, D. Li, J. Kim, J. G. Fujimoto, and F. X. Kärtner, “Attosecond resolution timing jitter characterization of diode pumped femtosecond Cr:LiSAF lasers,” in Conference on Lasers and Electro-Optics 2010 (Optical Society of America, 2010), Paper CTuDD6.
  16. A. Benedick, U. Demirbas, D. Li, J. G. Fujimoto, and F. X. Kaertner, “Attosecond Ti:sapphire pulse train phase noise,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CFK4. [PubMed]
  17. M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009). [CrossRef]
  18. J. A. Cox, A. H. Nejadmalayeri, J. Kim, and F. X. Kärtner, “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers,” Opt. Lett. 35(20), 3522–3524 (2010). [CrossRef] [PubMed]
  19. T. K. Kim, Y. Song, K. Jung, C. H. Nam, and J. Kim, “Sub-femtosecond timing jitter optical pulse trains from mode-locked Er-fiber lasers,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuA5. [PubMed]
  20. Y. Song, K. Jung, and J. Kim, “Impact of pulse dynamics on timing jitter in mode-locked fiber lasers,” Opt. Lett. 36(10), 1761–1763 (2011). [CrossRef] [PubMed]
  21. S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: part I—theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997). [CrossRef]
  22. R. Paschotta, “Timing jitter and phase noiseof mode-locked fiber lasers,” Opt. Express 18(5), 5041–5054 (2010). [CrossRef] [PubMed]
  23. W. H. Knox, “In situ measurement of complete intracavity dispersion in an operating Ti:sapphire femtosecond laser,” Opt. Lett. 17(7), 514–516 (1992). [CrossRef] [PubMed]
  24. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011). [CrossRef] [PubMed]
  25. I. L. Budunoğlu, C. Ulgüdür, B. Oktem, and F. Ö. Ilday, “Intensity noise of mode-locked fiber lasers,” Opt. Lett. 34(16), 2516–2518 (2009). [CrossRef] [PubMed]
  26. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett. 36(5), 743–745 (2011). [CrossRef] [PubMed]
  27. K. Wu, J. H. Wong, P. Shum, S. Fu, C. Ouyang, H. Wang, E. J. R. Kelleher, A. I. Chernov, E. D. Obraztsova, and J. Chen, “Nonlinear coupling of relative intensity noise from pump to a fiber ring laser mode-locked with carbon nanotubes,” Opt. Express 18(16), 16663–16670 (2010). [CrossRef] [PubMed]
  28. J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32(11), 1566–1568 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited