OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14532–14541

A photonic spectral processor employing two-dimensional WDM channel separation and a phase LCoS modulator

David Sinefeld, Christopher R. Doerr, and Dan M. Marom  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14532-14541 (2011)
http://dx.doi.org/10.1364/OE.19.014532


View Full Text Article

Enhanced HTML    Acrobat PDF (1645 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a Photonic Spectral Processor (PSP) that provides both fine spectral resolution and broad bandwidth support by dispersing light over two-dimensional space using the crossed-grating approach. The PSP uses a hybrid guided wave/free-space optics arrangement, where a waveguide grating router implemented in silica waveguides disperses the light in one dimension with a 100 GHz FSR and a bulk 1200 gr/mm diffraction grating disperses the light along the second (crossed) dimension. The diffracted light is focused by a lens onto a liquid-crystal on silicon, two-dimensional, phase-only, spatial light modulator, which we use to prescribe phase and amplitude to the signal’s spectral components. With the 2-D PSP arrangement we are able to address frequency components at 0.2 GHz/column with an optical resolution of 3.3 GHz covering 40 C-band channels.

© 2011 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(130.2035) Integrated optics : Dispersion compensation devices
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 16, 2011
Revised Manuscript: June 30, 2011
Manuscript Accepted: June 30, 2011
Published: July 13, 2011

Citation
David Sinefeld, Christopher R. Doerr, and Dan M. Marom, "A photonic spectral processor employing two-dimensional WDM channel separation and a phase LCoS modulator," Opt. Express 19, 14532-14541 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14532


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26(1), 73–78 (2008). [CrossRef]
  2. D. T. Neilson, R. Ryf, F. Pardo, V. A. Aksyuk, M. E. Simon, D. O. Lopez, D. M. Marom, and S. Chandrasekhar, “MEMS-based channelized dispersion compensator with flat passbands,” J. Lightwave Technol. 22(1), 101–105 (2004). [CrossRef]
  3. D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004). [CrossRef]
  4. S. Sohma, K. Mori, H. Masuda, A. Takada, K. Seno, K. Suzuki, and N. Ooba, “Flexible chromatic dispersion compensation over entire L-band for over 40-Gb/s WDM transparent networks using multichannel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett. 21(17), 1271–1273 (2009). [CrossRef]
  5. M. Shirasaki, “Chromatic dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett. 9(12), 1598–1600 (1997). [CrossRef]
  6. C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and H. Bulthuis, “Colorless tunable optical dispersion compensator based on a silica arrayed-waveguide grating and a polymer thermooptic lens,” IEEE Photon. Technol. Lett. 18(11), 1222–1224 (2006). [CrossRef]
  7. D. M. Marom, C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, “Compact colorless tunable dispersion compensator with 1000-ps/nm tuning range for 40-Gb/s data rates,” J. Lightwave Technol. 24(1), 237–241 (2006). [CrossRef]
  8. D. Sinefeld and D. M. Marom, “Colorless photonic spectral processor using hybrid guided-wave/free-space optics arrangement and LCoS modulator,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2009), paper OThB4.
  9. D. Sinefeld and D. M. Marom, “Hybrid guided-wave/free-space optics photonic spectral processor based on LCoS phase only modulator,” IEEE Photon. Technol. Lett. 22(7), 510–512 (2010). [CrossRef]
  10. K. Suzuki, N. Ooba, M. Ishii, K. Seno, T. Shibata, and S. Mino, “40-wavelength channelized tunable optical dispersion compensator with increased bandwidth consisting of arrayed waveguide gratings and liquid crystal on silicon,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2009), paper OThB3.
  11. K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, “Tunable optical dispersion compensator consisting of simple optics with arrayed waveguide grating and flat mirror,” IEEE Photon. Technol. Lett. 21(22), 1701–1703 (2009). [CrossRef]
  12. D. Sinefeld, S. Ben-Ezra, C. R. Doerr, and D. M. Marom, “All-channel tunable optical dispersion compensator based on linear translation of a waveguide grating router,” Opt. Lett. 36(8), 1410–1412 (2011). [CrossRef] [PubMed]
  13. D. Sinefeld and D. M. Marom, “Spectral processor implemented with hybrid free-space and guided-wave optics and active LCoS modulator,” in Proceedings of IEEE 25th Convention of Electrical and Electronics Engineers in Israel, 380–383 (2008).
  14. K. Seno, K. Suzuki, N. Ooba, K. Watanabe, M. Ishii, H. Ono, and S. Mino, “Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon,” Opt. Express 18(18), 18565–18579 (2010). [CrossRef] [PubMed]
  15. T. K. Chan, J. Karp, R. Jiang, N. Alic, S. Radic, C. F. Marki, and J. E. Ford, “1092 channel 2-D array demultiplexer for ultralarge data bandwidth,” J. Lightwave Technol. 25(3), 719–725 (2007). [CrossRef]
  16. V. R. Supradeepa, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008). [CrossRef] [PubMed]
  17. D. Sinefeld, C. R. Doerr, and D. M. Marom, “Photonic spectral processor employing two-dimensional WDM channel separation and a phase LCoS modulator,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2010), paper OMP5.
  18. K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-wavelength channel-by-channel tunable optical dispersion compensator using combination of arrayed-waveguide and bulk gratings,” in Optical Fiber Communication Conference and Exposition, (Optical Society of America, 2010), paper OMT7.
  19. K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-wavelength channel-by-channel tunable optical dispersion compensator using a combination of AWG and bulk grating,” IEEE Photon. Technol. Lett. 22(22), 1659–1661 (2010).
  20. C. K. Madsen and J. H. Zhao, Optical filter design and analysis: A signal processing approach (Wiley-Interscience, 1999).
  21. J. Leuthold, D. Marom, S. Cabot, J. Jaques, R. Ryf, and C. Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol. 22(1), 186–192 (2004). [CrossRef]
  22. S. Sygletos, R. Bonk, T. Vallaitis, A. Marculescu, P. Vorreau, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Filter assisted wavelength conversion with quantum-dot SOAs,” J. Lightwave Technol. 28(6), 882–897 (2010). [CrossRef]
  23. H. Schenk, H. Gruger, F. Zimmer, W. Scherf, and A. Kenda, “Optical MEMS for advanced spectrometers,” in Proceedings of IEEE/LEOS Conf. on Optical MEMS, 117–118 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited