OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14586–14593

Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier

Hwi Don Lee, Ju Han Lee, Myung Yung Jeong, and Chang-Seok Kim  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14586-14593 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1396 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The static and dynamic characteristics of a wavelength-swept active mode locking (AML) fiber laser are presented in both the time-region and wavelength-region. This paper shows experimentally that the linewidth of a laser spectrum and the bandwidth of the sweeping wavelength are dependent directly on the length and dispersion of the fiber cavity as well as the modulation frequency and sweeping rate under the mode-locking condition. To achieve a narrower linewidth, a longer length and higher dispersion of the fiber cavity as well as a higher order mode locking condition are required simultaneously. For a broader bandwidth, a lower order of the mode locking condition is required using a lower modulation frequency. The dynamic sweeping performance is also analyzed experimentally to determine its applicability to optical coherence tomography imaging. It is shown that the maximum sweeping rate can be improved by the increased free spectral range from the shorter length of the fiber cavity. A reflective semiconductor optical amplifier (RSOA) was used to enhance the modulation and dispersion efficiency. Overall a triangular electrical signal can be used instead of the sinusoidal signal to sweep the lasing wavelength at a high sweeping rate due to the lack of mechanical restrictions in the wavelength sweeping mechanism.

© 2011 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(140.3600) Lasers and laser optics : Lasers, tunable
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 27, 2011
Revised Manuscript: June 6, 2011
Manuscript Accepted: June 16, 2011
Published: July 14, 2011

Hwi Don Lee, Ju Han Lee, Myung Yung Jeong, and Chang-Seok Kim, "Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier," Opt. Express 19, 14586-14593 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intracavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997). [CrossRef]
  2. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006). [CrossRef] [PubMed]
  3. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010). [CrossRef] [PubMed]
  4. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005). [CrossRef] [PubMed]
  5. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008). [CrossRef] [PubMed]
  6. C. S. Kim, F. N. Farokhrooz, and J. U. Kang, “Electro-optic wavelength-tunable fiber ring laser based on cascaded composite Sagnac loop filters,” Opt. Lett. 29(14), 1677–1679 (2004). [CrossRef] [PubMed]
  7. Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17(10), 8310–8318 (2009). [CrossRef] [PubMed]
  8. Y. Zhou, K. K. Y. Cheung, Q. Li, S. Yang, P. C. Chui, and K. K. Y. Wong, “Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator,” Opt. Lett. 35(14), 2427–2429 (2010). [CrossRef] [PubMed]
  9. N. A. Olsson, “Polarisation-independent configuration optical amplifier,” Electron. Lett. 24(17), 1075–1076 (1988). [CrossRef]
  10. P. S. Andre, A. J. Teixeira, J. L. Pinto, and J. F. Rocha, “Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers,” Proceedings of the 2001 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 119–122 (2001).
  11. S. Kim, K. Lee, J. H. Lee, J. M. Jeong, and S. B. Lee, “Temperature-insensitive fiber Bragg grating-based bending sensor using radio-frequency-modulated reflective semiconductor optical amplifier,” Jpn. J. Appl. Phys. 48(6), 062402 (2009). [CrossRef]
  12. W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005). [CrossRef]
  13. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  14. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited