OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14594–14603

All-semiconductor active plasmonic system in mid-infrared wavelengths

Debin Li and C. Z. Ning  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14594-14603 (2011)
http://dx.doi.org/10.1364/OE.19.014594


View Full Text Article

Enhanced HTML    Acrobat PDF (1082 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metal-based plasmonics has a wide range of important applications but is subject to several drawbacks. In this paper, we propose and investigate an all-semiconductor-based approach to plasmonics in mid-infrared (MIR) wavelength range using InAs heterostructures. Our results show that InAs heterostructures are ideal for plasmonics with the shortest plasmon wavelength among common semiconductors. More importantly, as we will show, InAs heterostructures are superior to metal-based plasmonics for MIR applications due to much reduced loss, improved confinement, and ease of tunability of resonant wavelengths through carrier density. Finally, we propose and investigate a monolithic all-semiconductor integrated active plasmonic system with active source, waveguide, and detector all integrated on a chip, realizable in a single epitaxial growth process. Such an all semiconductor based system can be advantageous not only in plasmonics, but also in active metamaterials.

© 2011 OSA

OCIS Codes
(130.6750) Integrated optics : Systems
(230.7370) Optical devices : Waveguides
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: May 10, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: July 3, 2011
Published: July 14, 2011

Citation
Debin Li and C. Z. Ning, "All-semiconductor active plasmonic system in mid-infrared wavelengths," Opt. Express 19, 14594-14603 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14594


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007). [CrossRef] [PubMed]
  2. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010). [CrossRef] [PubMed]
  4. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef] [PubMed]
  5. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25(6), 372–374 (2000). [CrossRef] [PubMed]
  6. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004). [CrossRef] [PubMed]
  7. A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 646801 (2007).
  8. M. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007). [CrossRef]
  9. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  10. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi 247, 774–788 (2010) (b).
  11. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  13. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006). [CrossRef] [PubMed]
  14. D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80(15), 153304 (2009). [CrossRef]
  15. D. B. Li and C. Z. Ning, “Peculiar features of confinement factors in a metal-semiconductor waveguide,” Appl. Phys. Lett. 96(18), 181109 (2010). [CrossRef]
  16. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010). [CrossRef] [PubMed]
  17. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007). [CrossRef] [PubMed]
  18. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010). [CrossRef] [PubMed]
  19. M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008). [CrossRef]
  20. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010). [CrossRef]
  21. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008). [CrossRef] [PubMed]
  22. S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter 35(14), 7454–7463 (1987). [CrossRef] [PubMed]
  23. E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954). [CrossRef]
  24. H. Kroemer, “The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: a selective review,” Physica E 20(3-4), 196–203 (2004). [CrossRef]
  25. D. C. Larrabee, G. A. Khodaparast, J. Kono, K. Ueda, Y. Nakajima, M. Nakai, S. Sasa, M. Inoue, K. I. Kolokolov, J. Li, and C. Z. Ning, “Temperature dependence of intersubband transitions in InAs/AlSb quantum wells,” Appl. Phys. Lett. 83(19), 3936–3938 (2003). [CrossRef]
  26. J. Li, K. I. Kolokolov, C. Z. Ning, D. C. Larrabee, G. A. Khodaparast, J. Kono, K. Ueda, Y. Nakajima, S. Sasa, and M. Inoue, “Intersubband transitions in InAs/AlSb quantum wells,” in Progress in Semiconductors II: Electronic and Optoelectronic Applications, MRS Proceedings (2003), Vol. 744, p. 571.
  27. K. Kolokolov and C. Z. Ning, “Doping induced type-II to type-I transition and interband optical gain in InAs/AlSb quantum wells,” Appl. Phys. Lett. 83(8), 1581–1583 (2003). [CrossRef]
  28. www.silvaco.com .
  29. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  30. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984). [CrossRef]
  31. www.comsol.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited