OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14632–14641

Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14632-14641 (2011)
http://dx.doi.org/10.1364/OE.19.014632


View Full Text Article

Enhanced HTML    Acrobat PDF (1128 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present measurements of the polarization correlation and photon statistics of photon pairs that emerge from a laser-pumped warm rubidium vapor cell. The photon pairs occur at 780 nm and 1367 nm and are polarization entangled. We measure the autocorrelation of each of the generated fields as well as the cross-correlation function, and observe a strong violation of the two-beam Cauchy-Schwartz inequality. We evaluate the performance of the system as source of heralded single photons at a telecommunication wavelength. We measure the heralded autocorrelation and see that coincidences are suppressed by a factor of ≈ 20 from a Poissonian source at a generation rate of 1500 s−1, a heralding efficiency of 10%, and a narrow spectral width.

© 2011 OSA

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(270.5290) Quantum optics : Photon statistics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: June 7, 2011
Revised Manuscript: July 2, 2011
Manuscript Accepted: July 3, 2011
Published: July 14, 2011

Citation
R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, "Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble," Opt. Express 19, 14632-14641 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14632


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE, 1984), p. 175. [PubMed]
  2. A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef] [PubMed]
  3. L. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef] [PubMed]
  4. A. Kuzmich, W. P. Bowen, A. D. Booze, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731–734 (2003). [CrossRef] [PubMed]
  5. C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003). [CrossRef] [PubMed]
  6. V. Balic, D. A. Braje, P. Kolchin, G. Yin, and S. E. Haris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
  7. S. Du, P. Kolchin, C. Bethangady, G. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100, 183603 (2008). [CrossRef] [PubMed]
  8. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006). [CrossRef] [PubMed]
  9. K. F. Rim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010). [CrossRef]
  10. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  11. E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008). [CrossRef]
  12. A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17, 6156–6165 (2009). [CrossRef] [PubMed]
  13. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” N. J. Phys. 6, 163 (2004). [CrossRef]
  14. O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-performance guided-wave asynchronous heralded single-photon source,” Opt. Lett. 30, 1539–1541 (2005). [CrossRef] [PubMed]
  15. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010). [CrossRef]
  16. Y. O. Dudin, A. G. Radnaev, R. Zhao, J. Z. Blumoff, T. A. B. Kennedy, and A. Kuzmich, “Entanglement of light-shift compensated atomic spin waves with telecom light,” Phys. Rev. Lett. 105, 260502 (2010). [CrossRef]
  17. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009). [CrossRef]
  18. F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78, 013834 (2008). [CrossRef]
  19. W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse, “A computer-based digital feedback control of frequency drift of multiple lasers,” Rev. Sci. Instrum. 69, 3737–3740 (1998). [CrossRef]
  20. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82, 053842 (2010). [CrossRef]
  21. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-varible theories,” Phys. Rev. Lett. 23, 880–884 (1969). [CrossRef]
  22. H. J. Metcalf and P. Straten, Laser Cooling and Trapping (Springer, 1999). [CrossRef]
  23. Q. Zhou, W. Zhang, J.-R. Cheng, Y.-D. Huang, and J.-D. Peng, “Properties of optical fiber based synchronous heralded single photon sources at 1.5 μm,” Phys. Lett. A 375, 2274–2277 (2011). [CrossRef]
  24. A. F. Molisch and B. P. Oehry, Radiation Trapping in Atomic Vapours (Oxford University Press, 1998).
  25. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  26. M. D. Reid and D. F. Walls, “Violations of classical inequalities in quantum optics,” Phys. Rev. A 34, 1260–1276 (1986). [CrossRef] [PubMed]
  27. Q.-F. Chen, B.-S. Shi, M. Feng, Y.-S. Zhang, and G.-C. Guo, “Non-degenerate nonclassical photon pairs in a hot atomic ensemble,” Opt. Express 16, 21708–21713 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited