OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14642–14652

Compact single mode tunable laser using a digital micromirror device

Frank Havermeyer, Lawrence Ho, and Christophe Moser  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14642-14652 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2398 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The wavelength tuning properties of a tunable external cavity laser based on multiplexed volume holographic gratings and a commercial micromirror device are reported. The 3x3x3 cm3 laser exhibits single mode operation in single or multi colors between 776 nm and 783 nm with less than 7.5 MHz linewidth, 37 mW output power, 50 μs rise/fall time constant and a maximum switching rate of 0.66 KHz per wavelength. The unique discrete-wavelength-switching features of this laser are also well suited as a source for continuous wave Terahertz generation and three-dimensional metrology.

© 2011 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3600) Lasers and laser optics : Lasers, tunable

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 9, 2011
Manuscript Accepted: July 4, 2011
Published: July 14, 2011

Frank Havermeyer, Lawrence Ho, and Christophe Moser, "Compact single mode tunable laser using a digital micromirror device," Opt. Express 19, 14642-14652 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. C. Wu, A. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24(12), 4433–4454 (2006). [CrossRef]
  2. W. Huang, R. R. A. Syms, J. Stagg, and A. Lohmann, “Precision MEMS flexure mount for a Littman tunable external cavity laser,” IEE Proc. Scie. Meas. Technol. 151(2), 67–75 (2004). [CrossRef]
  3. R. R. A. Syms and A. Lohmann, “MOEMS tuning element for a Littrow external cavity laser,” J. Microelectromech. Syst. 12(6), 921–928 (2003). [CrossRef]
  4. X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum. Electron. 41(2), 187–197 (2005). [CrossRef]
  5. J. D. Berger, Y. W. Zhang, J. D. Grade, H. Lee, S. Hriaya, H. Jerman, A. Fennema, A. Tselikov, and D. Anthon, “Widely tunable external cavity diode laser using a MEMS electrostatic rotary actuator,” Ecoc'01: 27th European Conference on Optical Communication, Vols 1–6, 198–199 (2001).
  6. M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002). [CrossRef]
  7. M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, M. Hofmann, and R. Hofling, “Micromirror device controlled tunable diode laser,” Electron. Lett. 43(8), 456–457 (2007). [CrossRef]
  8. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716 (1995). [CrossRef] [PubMed]
  9. K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002). [CrossRef]
  10. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006). [CrossRef]
  11. T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001). [CrossRef]
  12. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003). [CrossRef] [PubMed]
  13. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jordens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010). [CrossRef] [PubMed]
  14. C. Moser, L. Ho, and F. Havermeyer, “Self-aligned non-dispersive external cavity tunable laser,” Opt. Express 16(21), 16691–16696 (2008). [CrossRef] [PubMed]
  15. G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quant. 13(3), 672–678 (2007). [CrossRef]
  16. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999). [CrossRef] [PubMed]
  17. C. Moser and G. Steckman, “Filters to Bragg about,” Photon. Spectra 39, 82 (2005).
  18. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  19. C. S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New two-color laser concepts for THz generation,” IEEE J. Sel. Top. Quant. 14(2), 270–276 (2008). [CrossRef]
  20. M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” J. Opt. Soc. Am. B 21(10), 1758–1771 (2004). [CrossRef]
  21. J. R. Demers, R. T. Logan, N. J. Bergeron, and E. R. Brown, “A High Signal-to-Noise Ratio, Coherent, Frequency-Domain THz Spectrometer Employed to Characterize Explosive Compounds,” 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Vols 1 and 2, 234–236 (2008).
  22. J. R. Demers, R. T. Logan, and E. R. Brown, “An optically integrated coherent frequency-domain THz spectrometer with signal-to-noise ratio up to 80 dB,” 2007 International Topical Meeting on Microwave Photonics, 92–95 (2007).
  23. J. R. Demers, R. T. Logan, N. J. Bergeron, and E. R. Brown, “A coherent frequency-domain THz spectrometer with a signal-to-noise ratio 60 dB at 1 THz - art. no. 694909,” Terahertz for Military and Security Applications Iv 6949, 94909–94909 (2008).
  24. A. J. Deninger, T. Gobel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Koberle, F. Lison, T. Muller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008). [CrossRef] [PubMed]
  25. J. Kuhn, T. Colomb, F. Montfort, F. Charriere, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007). [CrossRef] [PubMed]
  26. C. C. Aleksoff, “Multi-Wavelength digital holographic metrology - art. no. 63111D,” Opt. Info. Syst. IV 6311, D3111–D3111 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited