OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14653–14661

Lattice resonances in antenna arrays for liquid sensing in the terahertz regime

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14653-14661 (2011)
http://dx.doi.org/10.1364/OE.19.014653


View Full Text Article

Enhanced HTML    Acrobat PDF (1182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Terahertz antenna arrays supporting narrow lattice resonances are proposed as an alternative sensor-on-chip approach to liquid sensing. An array of metallic rectangular antennas fabricated on a polyethylene naphthalate (PEN) substrate is used to demonstrate the sensing of a number of fluids. Good agreement is shown between experiment and simulation with Q-factors of around 20 and a figure-of-merit (FOM) of 3.80 being achieved. Liquid sensing with antenna arrays is simple both in terms of fabrication and setup. The working frequency can be tuned with a suitable choice of substrates and array parameters. The nature of the lattice resonance means that the whole sample is used to provide the conditions required for resonance occurrence, eliminating the need to preferentially locate the sample in small areas of high field concentration. The antenna arrays could also potentially be coupled with a microfluidic system for in situ sensing or used in a reflection setup.

© 2011 OSA

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(260.5740) Physical optics : Resonance
(350.2770) Other areas of optics : Gratings
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Sensors

History
Original Manuscript: April 21, 2011
Revised Manuscript: June 4, 2011
Manuscript Accepted: June 4, 2011
Published: July 15, 2011

Citation
B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, "Lattice resonances in antenna arrays for liquid sensing in the terahertz regime," Opt. Express 19, 14653-14661 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14653


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000). [CrossRef]
  2. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002). [CrossRef]
  3. M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S601–S618 (2006). [CrossRef]
  4. V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18(3), 2797–2807 (2010). [CrossRef] [PubMed]
  5. H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, “Electromagnetic metamaterials for terahertz applications,” Int. J. Terahertz Sci. Technol. 1(1), 42–50 (2008).
  6. F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk meta-materials operating in the terahertz range,” Appl. Phys. Lett. 96, 081105 (2010). [CrossRef]
  7. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz meta-materials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008). [CrossRef]
  8. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011). [CrossRef] [PubMed]
  9. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007). [CrossRef]
  10. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008). [CrossRef]
  11. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–181895 (2009). [CrossRef] [PubMed]
  12. N. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011). [CrossRef] [PubMed]
  13. R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007). [CrossRef]
  14. T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87, 034105 (2005). [CrossRef]
  15. P. U. Jepsen, U. Møller, and H. Merbold, “Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy,” Opt. Express 15(22), 14717–14737 (2007). [CrossRef] [PubMed]
  16. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049 (2000). [CrossRef]
  17. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154 (2002). [CrossRef]
  18. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
  19. Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008). [CrossRef]
  20. T. Baras, T. Kleine-Ostmann, and M. Koch, “On-chip THz detection of biomaterials: a numerical study,” J. Biol. Phys. 29(2), 187–194 (2003). [CrossRef]
  21. R. E. Collins and F. J. Zucker, Antenna Theory Part 1 (McGraw-Hill Inc., 1969).
  22. R. E. Collins and F. J. Zucker, Antenna Theory Part 2 (McGraw-Hill Inc., 1969).
  23. B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008). [CrossRef] [PubMed]
  24. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
  25. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009). [CrossRef] [PubMed]
  26. V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010). [CrossRef]
  27. V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40(11), 2281–2291 (1993). [CrossRef]
  28. V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38, L115–L121 (2005). [CrossRef]
  29. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004). [CrossRef] [PubMed]
  30. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005). [CrossRef] [PubMed]
  31. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996). [CrossRef]
  32. R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009). [CrossRef]
  33. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227(2010). [CrossRef] [PubMed]
  34. C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited