OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14735–14745

Multilevel blazed gratings in resonance domain: an alternative to the classical fabrication approach

M. Oliva, T. Harzendorf, D. Michaelis, U. D. Zeitner, and A. Tünnermann  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14735-14745 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1380 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we present a novel technological approach for the fabrication of multilevel gratings in the resonance domain. A coded chromium mask is used to avoid alignment errors in electron beam lithography, which typically occur within the standard multistep binary micro-optics technology. The lateral features of all phase levels of the grating are encoded in a single chromium mask. The final profile of the structure is obtained by selective etching process for each level. This new technological method is applied for the fabrication of two different three-level gratings in resonance domain. The corresponding optical response as well as structural characterizations are presented and discussed. In particular, a first order diffraction efficiency of 90% is demonstrated for a grating period twice the wavelength at normal incidence.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(220.3740) Optical design and fabrication : Lithography
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.5745) Diffraction and gratings : Resonance domain

ToC Category:
Diffraction and Gratings

Original Manuscript: June 2, 2011
Revised Manuscript: July 8, 2011
Manuscript Accepted: July 8, 2011
Published: July 15, 2011

M. Oliva, T. Harzendorf, D. Michaelis, U. D. Zeitner, and A. Tünnermann, "Multilevel blazed gratings in resonance domain: an alternative to the classical fabrication approach," Opt. Express 19, 14735-14745 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. B. Fleming and M. C. Hutley, “Blazed diffractive optics,” Appl. Opt. 36(20), 4635–4643 (1997). [CrossRef] [PubMed]
  2. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive elements,” MIT Tech. rep. 914 (MIT, 1989).
  3. O. Sandfuchs, R. Brunner, D. Pätz, S. Sinzinger, and J. Ruoff, “Rigorous analysis of shadowing effects in blazed transmission gratings,” Opt. Lett. 31(24), 3638–3640 (2006). [CrossRef] [PubMed]
  4. S. Astilean, P. Lalanne, P. Chavel, E. Cambril, and H. Launois, “High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm,” Opt. Lett. 23(7), 552–554 (1998). [CrossRef] [PubMed]
  5. P. Lalanne, “Waveguiding in blazed-binary diffractive elements,” J. Opt. Soc. Am. A 16(10), 2517 (1999). [CrossRef]
  6. M.-S. L. Lee, P. Lalanne, J.-C. Rodier, and E. Cambril, “Wide-field-angle behavior of blazed-binary gratings in the resonance domain,” Opt. Lett. 25(23), 1690–1692 (2000). [CrossRef] [PubMed]
  7. H. J. Hyvärinen, P. Karvinen, and J. Turunen, “Polarization insensitive resonance-domain blazed binary gratings,” Opt. Express 18(13), 13444–13450 (2010). [CrossRef] [PubMed]
  8. H. Iizuka, N. Engheta, H. Fujikawa, K. Sato, and Y. Takeda, “Role of propagating modes in a double-groove grating with a +1st-order diffraction angle larger than the substrate-air critical angle,” Opt. Lett. 35(23), 3973–3975 (2010). [CrossRef] [PubMed]
  9. E. Noponen, J. Turunen, and A. Vasara, “Parametric optimization of multilevel diffractive optical elements by electromagnetic theory,” Appl. Opt. 31(28), 5910–5912 (1992). [CrossRef] [PubMed]
  10. M. Oliva, D. Michaelis, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, and U. D. Zeitner, “Highly efficient three-level blazed grating in the resonance domain,” Opt. Lett. 35(16), 2774–2776 (2010). [CrossRef] [PubMed]
  11. M. B. Stern, “Binary optics fabrication,” in Microoptics: Elements, Systems and Application, H. P. Herzig, ed. (Taylor & Francis, 1997), pp. 53–85.
  12. U. D. Zeitner and E. B. Kley, “Advanced lithography for micro-optics,” Proc. SPIE 6290, 629009 (2006). [CrossRef]
  13. C. David, “Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements,” Microelectron. Eng. 53(1-4), 677–680 (2000). [CrossRef]
  14. M. Kuittinen and J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142(1-3), 14–18 (1997). [CrossRef]
  15. U. D. Zeitner, D. Michaelis, E.-B. Kley, and M. Erdmann, “High performance gratings for space applications,” Proc. SPIE 7716, 77161K (2010). [CrossRef]
  16. M. Oliva, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, D. Michaelis, and U. D. Zeitner, “Smart technology for blazed multilevel gratings in resonance domain,” Proc. SPIE 7716, 77161L (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited