OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14746–14762

Semi-guiding high-aspect-ratio core (SHARC) fiber providing single-mode operation and an ultra-large core area in a compact coilable package

David A. Rockwell, Vladimir V. Shkunov, and John R. Marciante  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14746-14762 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1165 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new class of optical fiber is presented that departs from the circular-core symmetry common to conventional fibers. By using a high-aspect-ratio (~30:1) rectangular core, the mode area can be significantly expanded well beyond 10,000 μm2. Moreover, by also specifying a very small refractive-index step at the narrow core edges, the core becomes “semi-guiding,” i.e. it guides in the narrow dimension and is effectively un-guiding in the wide mm-scale dimension. The mode dependence of the resulting Fresnel leakage loss in the wide dimension strongly favors the fundamental mode, promoting single-mode operation. Since the modal loss ratios are independent of mode area, this core structure offers nearly unlimited scalability. The implications of using such a fiber in fiber laser and amplifier systems are also discussed.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 13, 2011
Manuscript Accepted: July 4, 2011
Published: July 15, 2011

David A. Rockwell, Vladimir V. Shkunov, and John R. Marciante, "Semi-guiding high-aspect-ratio core (SHARC) fiber providing single-mode operation and an ultra-large core area in a compact coilable package," Opt. Express 19, 14746-14762 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000). [CrossRef] [PubMed]
  2. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66(3), 216–220 (1976). [CrossRef]
  3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010). [CrossRef]
  4. C. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, and K. Tankala, “Effectively single-mode chirally-coupled core fiber,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME2.
  5. Z. Jiang and J. R. Marciante, “Loss measurements for optimization of large-mode-area helical-core fibers,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FWA3.
  6. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006). [CrossRef] [PubMed]
  7. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006). [CrossRef] [PubMed]
  8. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005). [CrossRef] [PubMed]
  9. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689–1697 (2007). [CrossRef]
  10. http://www.nlight.net/news/releases/101~nLIGHT-Introduces-New-NonCircular-Optical-Fiber-Geometries .
  11. G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35(10), 1542–1544 (2010). [CrossRef] [PubMed]
  12. C. M. Zeringue, I. Dajani, and G. T. Moore, “Suppression of stimulated Brillouin scattering in optical fibers through phase-modulation: a time dependent model,” Proc. SPIE 7914, 791409, 791409-9 (2011). [CrossRef]
  13. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” CLEO 2006, paper CThZ3.
  14. D. Walton, S. Gray, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. Demeritt, and L. Zenteno, “High power, narrow linewidth fiber lasers,” Proc. SPIE 6102, 610205, 610205-8 (2006). [CrossRef]
  15. L. Dong, “Limits of stimulated Brillouin scattering suppression in optical fibers with transverse acoustic waveguide designs,” J. Lightwave Technol. 28, 3156 (2010).
  16. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 1983).
  17. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon. 1(1), 58–106 (2009). [CrossRef]
  18. A. Reisinger, “Characteristics of optical guided modes in lossy waveguides,” Appl. Opt. 12(5), 1015–1025 (1973). [CrossRef] [PubMed]
  19. H. Rao, M. J. Steel, R. Scarmozzino, and R. M. Osgood., “Complex propagators for evanescent waves in bidirectional beam propagation method,” J. Lightwave Technol. 18(8), 1155–1160 (2000). [CrossRef]
  20. Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26(8), 1335–1339 (1990). [CrossRef]
  21. J. Yamauchi, T. Ando, and H. Nakano, “Beam propagation analysis of optical fibres by alternating direction implicit method,” Electron. Lett. 27(18), 1663–1666 (1991). [CrossRef]
  22. G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28(1), 363–370 (1992). [CrossRef]
  23. R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27(6), 337–339 (1975). [CrossRef]
  24. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995). [CrossRef]
  25. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66(4), 311–320 (1976). [CrossRef]
  26. O. F. S. Laboratories and N. J. Somerset, 08873, http://www.ofsoptics.com/labs/ .
  27. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006). [CrossRef] [PubMed]
  28. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008). [CrossRef] [PubMed]
  29. J. R. Marciante, R. G. Roides, V. V. Shkunov, and D. A. Rockwell, “Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering,” Opt. Lett. 35(11), 1828–1830 (2010). [CrossRef] [PubMed]
  30. V. V. Shkunov, D. A. Rockwell, F. P. Strohkendl, J. R. Marciante, D. J. Trevor, and D. J. DiGiovanni, “Semi-guiding high aspect ratio core (SHARC) fiber laser,” Solid-State and Diode Laser Technology Review, (Broomfield, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (4347 KB)     
» Media 2: MOV (12727 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited