OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 14763–14778

Noise reduction of supercontinua via optical feedback

Nicoletta Brauckmann, Michael Kues, Petra Groß, and Carsten Fallnich  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 14763-14778 (2011)
http://dx.doi.org/10.1364/OE.19.014763


View Full Text Article

Enhanced HTML    Acrobat PDF (1803 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The impact of delayed optical feedback on the supercontinuum noise properties is investigated numerically and experimentally. The supercontinuum is generated by coupling femtosecond laser pulses into a microstructured fiber within a ring resonator, which introduces the optical feedback. The power noise and spectral amplitude noise properties of this feedback system are numerically and experimentally compared with single-pass supercontinuum generation. In a demonstrative experiment via optical feedback the power noise could be reduced by 15 dB and the spectral amplitude noise could be reduced by up to 28 dB.

© 2011 OSA

OCIS Codes
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(320.7140) Ultrafast optics : Ultrafast processes in fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

History
Original Manuscript: March 21, 2011
Revised Manuscript: April 29, 2011
Manuscript Accepted: June 2, 2011
Published: July 18, 2011

Citation
Nicoletta Brauckmann, Michael Kues, Petra Groß, and Carsten Fallnich, "Noise reduction of supercontinua via optical feedback," Opt. Express 19, 14763-14778 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-14763


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001). [CrossRef]
  3. A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1145–1160 (2006). [CrossRef] [PubMed]
  4. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227, 203–215 (2007). [CrossRef] [PubMed]
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]
  6. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002). [CrossRef] [PubMed]
  7. H. Zhang, S. Yu, J. Zhang, and W. Gu, “Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths,” Opt. Express 15, 1147–1152 (2007). [CrossRef] [PubMed]
  8. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003). [CrossRef]
  9. M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16, 21076–21086 (2008). [CrossRef] [PubMed]
  10. F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett. 30, 1566–1568 (2005). [CrossRef] [PubMed]
  11. P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005). [CrossRef] [PubMed]
  12. G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94, 187–194 (2009). [CrossRef]
  13. E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14, 7914–7923 (2006). [CrossRef] [PubMed]
  14. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett. 30, 3132–3134 (2005). [CrossRef] [PubMed]
  15. P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Grating phase matching beyond a continuum edge,” Opt. Lett. 32, 2629–2631 (2007). [CrossRef] [PubMed]
  16. P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16, 11954–11968 (2008). [CrossRef] [PubMed]
  17. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005). [CrossRef] [PubMed]
  18. N. Brauckmann, M. Kues, P. Groß, and C. Fallnich, “Adjustment of supercontinua via the optical feedback phase - numerical investigations,” Opt. Express 18, 20667–20672 (2010). [CrossRef] [PubMed]
  19. N. Brauckmann, M. Kues, P. Groß, and C. Fallnich, “Adjustment of supercontinua via the optical feedback phase - experimental verifications,” Opt. Express 18, 24611–24618 (2010). [CrossRef] [PubMed]
  20. M. Kues, N. Brauckmann, T. Walbaum, P. Groß, and C. Fallnich, “Nonlinear dynamics of femtosecond super-continuum generation with feedback,” Opt. Express 17, 15827–15841 (2009). [CrossRef] [PubMed]
  21. N. Brauckmann, M. Kues, T. Walbaum, P. Groß, and C. Fallnich, “Experimental investigations on nonlinear dynamics in supercontinuum generation with feedback,” Opt. Express 18, 7190–7202 (2010). [CrossRef] [PubMed]
  22. G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, “Dynamical pulse shaping in a nonlinear resonator,” Phys. Rev. A 52, 830–838 (1995). [CrossRef] [PubMed]
  23. G. Sucha, D. S. Chemla, and S. R. Bolton, “Effects of cavity topology on the nonlinear dynamics of additive-pulse mode-locked lasers,” J. Opt. Soc. Am. B 15, 2847–2853 (1998). [CrossRef]
  24. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003). [CrossRef] [PubMed]
  25. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003). [CrossRef] [PubMed]
  26. B. R. Washburn and N. R. Newbury, “Phase, timing, and amplitude noise on supercontinuum generation in microstructure fiber,” Opt. Express 12, 2166–2175 (2004). [CrossRef] [PubMed]
  27. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B 24, 1771–1785 (2007). [CrossRef]
  28. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999). [CrossRef]
  29. NKT Photonics, “NL-PM-750 data sheet,” http://www.nktphotonics.com/files/files/datasheet_nl-pm-750.pdf .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited