OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 14823–14837

Fabrication and characterization of new Yb-doped zirconia-germano-alumino silicate phase-separated nano-particles based fibers

A. V. Kir’yanov, M.C. Paul, Yu. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, L. Escalante Zarate, and A. D. Guzman-Chavez  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 14823-14837 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1531 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



New zirconia-germano-alumino silicate, nano-particles based, Ytterbium doped fibers are obtained through the conventional modified chemical vapour deposition and solution doping techniques. The start fiber preforms are characterized by means of electron micro probe, energy dispersive x-ray, and electron diffraction analyses, revealing the presence of phase-separated nano-sized Ytterbium-rich areas in the core, while the final fibers are inspected in the sense of spectroscopy and laser properties.

© 2011 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2290) Fiber optics and optical communications : Fiber materials
(160.2540) Materials : Fluorescent and luminescent materials
(160.3380) Materials : Laser materials
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 28, 2011
Revised Manuscript: June 15, 2011
Manuscript Accepted: June 20, 2011
Published: July 18, 2011

A. V. Kir’yanov, M.C. Paul, Yu. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, L. Escalante Zarate, and A. D. Guzman-Chavez, "Fabrication and characterization of new Yb-doped zirconia-germano-alumino silicate phase-separated nano-particles based fibers," Opt. Express 19, 14823-14837 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: Effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84(8), 4525–4531 (1998). [CrossRef]
  2. J.St. John stJ. L. Coffer, Y. D. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888–1892 (1999). [CrossRef]
  3. C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75(14), 2011–2013 (1999). [CrossRef]
  4. W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, and H. D. Glicksman, “Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol,” Appl. Phys. Lett. 78(8), 1128–1130 (2001). [CrossRef]
  5. E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare earth doped photonic components,” J. Sol-Gel Sci. Tech. (Paris) 19, 231–236 (2000). [CrossRef]
  6. G. Brasse, C. Restoin, J.-L. Auguste, S. Hautreux, J.-M. Blondy, A. Lecomte, F. Sandoz, and C. Pedrido, “Nanoscaled optical fibre obtained by the sol-gel process in the SiO2–ZrO2 system doped with rare earth ions,” Opt. Mater. 31(5), 765–768 (2009). [CrossRef]
  7. M. Rajala, K. Janka, and P. Kykkänen, “An Industrial method for nanoparticle synthesis with a wide range of compositions,” Adv. Mater. Sci. 5, 493–497 (2003).
  8. J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution doping technique for fabrication of rare-earth doped optical fibres,” Electron. Lett. 23(7), 329–331 (1987). [CrossRef]
  9. W. Blanc, B. Dussardier, and M. C. Paul, “Er doped oxide nanoparticles in silica based optical fibres,” Glass Technol.: Eur. J. Glass Sci. Technol. A 50, 79–81 (2009).
  10. S. Yoo, M. P. Kalita, A. J. Boyland, A. S. Webb, R. J. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun. 283(18), 3423–3427 (2010). [CrossRef]
  11. G. Brasse, C. Restoin, J.-L. Auguste, and J.-M. Blondy, “Cascade emissions of an erbium-yyterbium doped silica-zirconia nanostructured optical fiber under supercontinuum irradiation,” Appl. Phys. Lett. 94(24), 241903 (2009). [CrossRef]
  12. D. E. Harrison, N. T. Melamed, and E. C. Subbarao, “A new family of self-activated phosphors,” J. Electrochem. Soc. 110(1), 23–28 (1963). [CrossRef]
  13. C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol–gel process: Structural and optical properties,” J. Sol-Gel Sci. Technol. 8(1-3), 999–1005 (1997). [CrossRef]
  14. A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+:ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002). [CrossRef]
  15. V. C. Costa, M. J. Lochhead, and K. L. Bray, “Fluorescence line narrowing study of Eu3+ -doped sol-gel silica,” Chem. Mater. 8(3), 783–790 (1996). [CrossRef]
  16. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976).
  17. V. G. Zavodinsky and A. N. Chibisov, “Zirconia nanoparticles and nanostructured systems,” J. Phys: Conference Series 29, 173–176 (2006). [CrossRef]
  18. P. F. James, “Liquid-phase separation in glass-forming systems,” J. Mater. Sci. 10(10), 1802–1825 (1975). [CrossRef]
  19. G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Hafnium and zirconium silicates for advanced gate dielectrics,” J. Appl. Phys. 87(1), 484–492 (2000). [CrossRef]
  20. G. Rayner, R. Therrien, and G. Lucovsky, “The structure of plasma-deposited and annealed pseudo-binary ZrO2-SiO2 alloys,” Material Res. Soc. Symp. Proc, 611, C1.3.1–C1.3.9 (2000).
  21. V. F. Khopin, A. A. Umnikov, N. N. Vechkanov, A. E. Rozental’, A. N. Gur’yanov, M. M. Bubnov, A. A. Rybaltovskii, A. V. Belov, and E. M. Dianov, “Effect of core glass composition on the optical properties of active fibers,” Inorg. Mater. 41(4), 434–437 (2005). [CrossRef]
  22. M. Tomazawa and R. H. Doremus, eds., Phase Separation in Glass 17, Academic Press, NY, 1979, p. 71.
  23. B. E. Warren and A. G. Pines, “Atomic consideration of immiscibility in glass systems,” J. Am. Ceram. Soc. 23(10), 301–220 (1940). [CrossRef]
  24. P. Vomacka, O. Babushkin, and R. Warren, “Zirconia as a nucleating agent in a yttria-alumina-silica glass,” J. Eur. Ceram. Soc. 15(11), 1111–1117 (1995). [CrossRef]
  25. M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers,” Opt. Lett. 35(17), 2882–2884 (2010). [CrossRef] [PubMed]
  26. D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: A review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011). [CrossRef]
  27. E. M. Dianov, V. M. Mashinsky, V. B. Neustruev, O. D. Sazhin, V. V. Brazhkin, and V. A. Sidorov, “Optical absorption and luminescence of germanium oxygen-deficient centers in densified germanosilicate glass,” Opt. Lett. 22(14), 1089–1091 (1997). [CrossRef] [PubMed]
  28. C. S. Carlson, K. E. Keister, P. D. Dragic, A. Croteau, and J. G. Eden, “Photoexcitation of Yb-doped aluminosilicate fibers at 250 nm: evidence for excitation transfer from oxygen deficiency centers to Yb3+,” J. Opt. Soc. Am. B 27(10), 2087–2094 (2010). [CrossRef]
  29. P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008). [CrossRef]
  30. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006). [CrossRef] [PubMed]
  31. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32(12), 1626–1628 (2007). [CrossRef] [PubMed]
  32. S. Jetschke, S. Unger, U. Ropke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007). [CrossRef] [PubMed]
  33. J. J. Koponen, M. J. Soderlund, H. J. Hoffman, D. A. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47(9), 1247–1256 (2008). [CrossRef] [PubMed]
  34. Y.-W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power Yb3+-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009). [CrossRef]
  35. A.V. Shubin, M.V. Yashkov, M.A. Melkumov, S.A. Smirnov, I.A. Bufetov, and E.M. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” CLEO-Europe – EQEC 2007, Technical digest: Paper CJ3–1-YHU (2007).
  36. A. D. Guzman-Chávez, A. V. Kir’yanov, Yu. O. Barmenkov, and N. N. Il’ichev, “Reversible photo-darkening and resonant photo bleaching of Ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett. 4(10), 734–739 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited