OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 14845–14851

Electron spin polarization-based integrated photonic devices

Christopher J. Trowbridge, Benjamin M. Norman, Jason Stephens, Arthur C. Gossard, David D. Awschalom, and Vanessa Sih  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 14845-14851 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The lack of optical isolators has limited the serial integration of components in the development of photonic integrated circuits. Isolators are inherently nonreciprocal and, as such, require nonreciprocal optical propagation. We propose a class of integrated photonic devices that make use of electrically-generated electron spin polarization in semiconductors to cause nonreciprocal TE/TM mode conversion. Active control over the non-reciprocal mode coupling rate allows for the design of electrically-controlled isolators, circulators, modulators and switches. We analyze the effects of waveguide birefringence and absorption loss as limiting factors to device performance.

© 2011 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Integrated Optics

Original Manuscript: May 10, 2011
Revised Manuscript: June 28, 2011
Manuscript Accepted: July 8, 2011
Published: July 18, 2011

Christopher J. Trowbridge, Benjamin M. Norman, Jason Stephens, Arthur C. Gossard, David D. Awschalom, and Vanessa Sih, "Electron spin polarization-based integrated photonic devices," Opt. Express 19, 14845-14851 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009). [CrossRef]
  2. H. Shimizu, S. Goto, and T. Mori, “Optical isolation using nonreciprocal polarization rotation in Fe-InGaAlAs/InP semiconductor active waveguide optical isolators,” Appl. Phys. Express 3, 072201 (2010). [CrossRef]
  3. X. Guo, T. Zaman, and R. J. Ram, “Magneto-optical semiconductor waveguides for integrated isolators,” Proc. SPIE 5729, 152–159 (2005). [CrossRef]
  4. Tauhid R. Zaman, Xiaoyun Guo, and Rajeev J. Ram, “Semiconductor waveguide isolators,” J. Lightwave Technol. 26, 291–302 (2008). [CrossRef]
  5. N. Sugimoto, T. Shintaku, A. Tate, J. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11, 355–357 (1999). [CrossRef]
  6. G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006). [CrossRef]
  7. T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP Waveguide,” Appl. Phys. Lett. 90, 023514 (2007). [CrossRef]
  8. Vadym Zayets, Mukul C. Debnath, and Ando Koji, “Optical isolation in Cd1–x MnxTe magneto-optical waveguide grown on GaAs substrate,” J. Opt. Soc. Am. B 22, 281–285 (2005). [CrossRef]
  9. T. R. Zaman, X. Guo, and R. J. Ram, “Proposal for a polarization-independent integrated optical circulator,” IEEE Photon. Technol. Lett. 18, 1359–1361 (2006). [CrossRef]
  10. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000). [CrossRef]
  11. Y. Nishikawa, A. Tackeuchi, S. Nakamura, S. Muto, and N. Yokoyama, “All-optical picosecond switching of a quantum well etalon using spin-polarization relaxation,” Appl. Phys. Lett. 66, 839–841 (1995). [CrossRef]
  12. D. Marshall, M. Mazilu, A. Miller, and C. C. Button “Polarization switching and induced birefringence in In-GaAsP multiple quantum wells at 1.5μm,” J. Appl. Phys. 91, 4090 (2002). [CrossRef]
  13. T. Mizumoto and Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microw. Theory Tech . MTT-30, 922–925 (1982). [CrossRef]
  14. H. Shimizu and Y. Nakano, “Fabrication and characterization of an InGaAsP/InP active waveguide optical isolator with 14.7dB/mm TE mode nonreciprocal attenuation.” J. Lightwave Technol. 24, 38–43 (2006). [CrossRef]
  15. Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94, 171116 (2009). [CrossRef]
  16. F. Meier and B. P. Zakharchenya, Optical Orientation (Elsevier Science Ltd., 1984).
  17. Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Current-induced spin polarization in strained semiconductors,” Phys. Rev. Lett. 93, 176601 (2004). [CrossRef] [PubMed]
  18. A. Yu. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, and N. S. Averkiev, “Current-induced spin polarization at a single heterojunction,” Appl. Phys. Lett. 85, 5929–5931 (2004). [CrossRef]
  19. V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31 (2005). [CrossRef]
  20. C. L. Yang, H. T. He, Lu Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, and W. K. Ge, “Spectral dependence of spin photocurrent and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas,” Phys. Rev. Lett. 96, 186605 (2006).
  21. W. F. Koehl, M. H. Wong, C. Poblenz, B. Swenson, U. K. Mishra, J. S. Speck, and D. D. Awschalom, “Current-induced spin polarization in gallium nitride,” Appl. Phys. Lett. 95, 072110 (2009). [CrossRef]
  22. N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current induced polarization and the spin hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006). [CrossRef] [PubMed]
  23. D. Culcer and R. Winkler, “Steady states of spin distributions in the presence of spin-orbit interactions,” Phys. Rev. B 76, 245322 (2007). [CrossRef]
  24. H.-A. Engel, E. I. Rashba, and B. I. Halperin, “Out-of-plane spin polarization from in-plane electric and magnetic fields,” Phys. Rev. Lett. 98, 036602 (2007). [CrossRef] [PubMed]
  25. B. M. Norman, C. J. Trowbridge, J. Stephens, A. C. Gossard, D. D. Awschalom, and V. Sih, “Mapping spin-orbit splitting in strained (In,Ga)As epilayers,” Phys. Rev. B 82, 081304 (2010). [CrossRef]
  26. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron . QE-9, 919–933 (1973). [CrossRef]
  27. C. Weisbuch and C. Hermann, “Optical detection of conduction-electron spin resonance in GaAs, Ga1–xInxAs, and Ga1–xAlxAs,” Phys. Rev. B 15, 816–822 (1977). [CrossRef]
  28. B. A. Bernevig and S.-C. Zhang, “Spin splitting and spin current in strained bulk semiconductors,” Phys. Rev. B 72, 115204 (2005). [CrossRef]
  29. J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997). [CrossRef]
  30. A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, “Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor,” Appl. Phys. Lett. 80, 1240 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited