OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 14860–14870

Spoof plasmon analogue of metal-insulator-metal waveguides

Mikhail A. Kats, David Woolf, Romain Blanchard, Nanfang Yu, and Federico Capasso  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 14860-14870 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1262 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the properties of guided modes in metallic parallel plate structures with subwavelength corrugation on the surfaces of both conductors, which we refer to as spoof-insulator-spoof (SIS) waveguides, in close analogy to metal-insulator-metal (MIM) waveguides in plasmonics. A dispersion relation for SIS waveguides is derived, and the modes are shown to arise from the coupling of conventional waveguide modes with the localized modes of the grooves in the SIS structure. SIS waveguides have numerous design parameters and can be engineered to guide modes with very low group velocities and adiabatically convert light between conventional photonic modes and plasmonic ones.

© 2011 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: May 23, 2011
Revised Manuscript: June 25, 2011
Manuscript Accepted: June 26, 2011
Published: July 18, 2011

Mikhail A. Kats, David Woolf, Romain Blanchard, Nanfang Yu, and Federico Capasso, "Spoof plasmon analogue of metal-insulator-metal waveguides," Opt. Express 19, 14860-14870 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007)
  4. J. Zenneck, “Uber die Fortpflanzung ebener elektromagnetischer Wellen langs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 328(10), 846– (1907). [CrossRef]
  5. A. Sommerfeld, “Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 333(4), 665–736 (1909). [CrossRef]
  6. M. Osawa, “Surface-enhanced infrared absorption,” in Topics in Applied Physics (Springer, 2001) vol. 81.
  7. C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010). [CrossRef] [PubMed]
  8. K. Y. Xu, X. F. Lu, A. M. Song, and G. Wang, “Enhanced terahertz detection by localized surface plasma oscillations in a nanoscale unipolar diode,” J. Appl. Phys. 103(11), 113708 (2008). [CrossRef]
  9. J. A. Deibel, K. L. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006). [CrossRef] [PubMed]
  10. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010). [CrossRef] [PubMed]
  11. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119 (1950). [CrossRef]
  12. W. Rotman, “A study of single-surface corrugated guides,” Proc. of the IRE 39, 8 (1951).
  13. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  14. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plastomic metamaterials,” J. Opt. A 7, S97–S101 (2005). [CrossRef]
  15. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006). [CrossRef] [PubMed]
  16. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008). [CrossRef]
  17. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008). [CrossRef]
  18. K. Song and P. Mazumder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. Electron. Dev. 56(11), 2792 (2009). [CrossRef]
  19. B. Wang, Y. Jin, and S. He, “Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies,” Appl. Opt. 47(21), 3694–3700 (2008). [CrossRef] [PubMed]
  20. J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009). [CrossRef]
  21. A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009). [CrossRef]
  22. K. R. Welford and J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35(9), 1467 (1988). [CrossRef]
  23. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442 (2004). [CrossRef]
  24. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  25. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991)
  26. U. S. Inan and A. S. Inan, Electromagnetic Waves (Prentice Hall, 2000)
  27. P. Yeh, Optical Waves in Layered Media (Wiley, 2005)
  28. For example, the COMSOL Multiphysics RF module allows for PMC boundary conditions for electromagnetic simulations, in addition to the more common PEC, perfectly matched layer (PML), etc.
  29. Y. Zhang, J. von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antenn. Propag. 31, 10 (2003).
  30. D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8 (2005). [CrossRef]
  31. C. R. Brewitt-Taylor, “Limitation on the bandwidth of artificial perfect magnetic conductor surfaces,” IET Microw. Antennas Propag. 1(1), 255–260 (2007). [CrossRef]
  32. F. Gires and P. Tournois, “Interferometre utilisable pour la compression d'impulsions lumineuses modulees en frequence,” C. R. Acad. Sci. Paris 258, 6112 (1964).
  33. A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982)
  34. H. M. Barlow and A. L. Cullen, “Surface waves,” Proc. of the Institution. of Electrical. Engineers. London. 100, 68 (1953).
  35. M. Cardona, “Fresnel Reflection and Surface Plasmons,” Am. J. Phys. 39(10), 1277 (1971). [CrossRef]
  36. The RF Module of COMSOL Multiphysics 4 was used to perform finite element calculations.
  37. S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010). [CrossRef] [PubMed]
  38. X. Y. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010). [CrossRef]
  39. D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express 17(22), 19996–20011 (2009). [CrossRef] [PubMed]
  40. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450(7168), 397–401 (2007). [CrossRef] [PubMed]
  41. H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 22 (2004).
  42. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008). [CrossRef] [PubMed]
  43. Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009). [CrossRef] [PubMed]
  44. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16(23), 18576–18589 (2008). [CrossRef] [PubMed]
  45. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009). [CrossRef] [PubMed]
  46. M. Navarro-Cia, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited