OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 14883–14891

Gain-switched CW fiber laser for improved supercontinuum generation in a PCF

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 14883-14891 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (979 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate supercontinuum generation in a PCF pumped by a gain-switched high-power continuous wave (CW) fiber laser. The pulses generated by gain-switching have a peak power of more than 700 W, a duration around 200 ns, and a repetition rate of 200 kHz giving a high average power of almost 30 W. By coupling such a pulse train into a commercial nonlinear photonic crystal fiber, a supercontinuum is generated with a spectrum spanning from 500 to 2250 nm, a total output power of 12 W, and an infrared flatness of 6 dB over a bandwidth of more than 1000 nm with a power density above 5 dBm/nm (3 mW/nm). This is considerably broader than when operating the same system under CW conditions. The presented approach is attractive due to the high power, power scalability, and reduced system complexity compared to picosecond-pumped supercontinuum sources.

© 2011 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.3510) Lasers and laser optics : Lasers, fiber
(140.5560) Lasers and laser optics : Pumping
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 7, 2011
Revised Manuscript: July 6, 2011
Manuscript Accepted: July 6, 2011
Published: July 18, 2011

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, "Gain-switched CW fiber laser for improved supercontinuum generation in a PCF," Opt. Express 19, 14883-14891 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006). [CrossRef]
  2. R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, 2006).
  3. J. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12, 113001 (2010). [CrossRef]
  4. N. Savage, “Supercontinuum sources,” Nat. Photonics 3, 114–115 (2009).
  5. P. Persephonis, S. Chernikov, and J. Taylor, “Cascaded cw fibre raman laser source 1.6–1.9μm,” Electron. Lett. 32, 1486–1487 (1996). [CrossRef]
  6. A. Avdokhin, S. Popov, and J. Taylor, “Continuous-wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003). [CrossRef] [PubMed]
  7. J. Travers, R. Kennedy, S. Popov, J. Taylor, H. Sabert, and B. Mangan, “Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber,” Opt. Lett. 30, 1938–1940 (2005). [CrossRef] [PubMed]
  8. B. Cumberland, J. Travers, S. Popov, and J. Taylor, “Toward visible cw-pumped supercontinua,” Opt. Lett. 33, 2122–2124 (2008). [CrossRef] [PubMed]
  9. J. Travers, A. Rulkov, B. Cumberland, S. Popov, and J. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400W continuous wave fiber laser,” Opt. Express 16, 14435–14447 (2008). [CrossRef] [PubMed]
  10. A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, “Dispersion-engineered photonic crystal fibers for CW-pumped supercontinuum sources,” J. Lightwave Technol. 27, 1556–1564 (2009). [CrossRef]
  11. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633 (2009). [CrossRef] [PubMed]
  12. M. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006). [CrossRef] [PubMed]
  13. B. Barviau, O. Vanvincq, A. Mussot, Y. Quiquempois, G. Mélin, and A. Kudlinski, “Enhanced soliton self-frequency shift and cw supercontinuum generation in geo2-doped core photonic crystal fibers,” J. Opt. Soc. Am. B 28, 1152–1160 (2011). [CrossRef]
  14. S. Sørensen, A. Judge, C. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuumgroup-acceleration matching,” Opt. Lett. 36, 816–818 (2011). [CrossRef] [PubMed]
  15. A. Judge, O. Bang, B. Eggleton, B. Kuhlmey, E. Mägi, R. Pant, and C. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009). [CrossRef]
  16. A. Judge, O. Bang, and C. Martijn de Sterke, “Theory of dispersive wave frequency shift via trapping by a soliton in an axially nonuniform optical fiber,” J. Opt. Soc. Am. B 27, 2195–2202 (2010). [CrossRef]
  17. T. Nikolajsen and P. Skovgaard, “Pulsed fiber laser,” (2011). WO Patent WO/2011/023,201.
  18. D. Carlson, “Dynamics of a repetitively pump-pulsed Nd: YAG laser,” J. Appl. Phys. 39, 4369–4374 (1968). [CrossRef]
  19. L. Zenteno, E. Snitzer, H. Po, R. Tumminelli, and F. Hakimi, “Gain switching of a Nd3+-doped fiber laser,” Opt. Lett. 14, 671 (1989). [CrossRef] [PubMed]
  20. R. Petkovšek, V. Agrež, and F. Bammer, “Gain-switching of a fiber laser: experiment and a simple theoretical model,” in “Proc. SPIE ,”(2010), p. 77210L. [CrossRef]
  21. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32, 1797–1799 (2007). [CrossRef] [PubMed]
  22. M. Giesberts, J. Geiger, M. Traub, and H. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” in “Proc. SPIE ,” (2009), p. 71952P. [CrossRef]
  23. C. Renaud, H. Offerhaus, J. Alvarez-Chavez, C. Nilsson, W. Clarkson, P. Turner, D. Richardson, and A. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001). [CrossRef]
  24. J. Kerttula, V. Filippov, Y. Chamorovskii, K. Golant, and O. Okhotnikov, “250-mu J broadband supercontinuum generated using a q-switched tapered fiber laser,” IEEE Photon. Technol. Lett. 23, 380–382 (2011). [CrossRef]
  25. M. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (CRC, 2001). [CrossRef]
  26. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006). [CrossRef]
  27. E. Räikkönen, M. Kaivola, and S. Buchter, “Compact supercontinuum source for the visible using gain-switched Ti:Sapphire laser as pump,” J. Eur. Opt. Soc. Rapid Pub. 1, (2006).
  28. K. Hansen, C. Olausson, J. Broeng, K. Mattsson, M. Nielsen, T. Nikolajsen, P. Skovgaard, M. Sørensen, M. Denninger, and C. Jakobsen, “Airclad fiber laser technology,” in “Proc. SPIE ,”, (2008), p. 687307. [CrossRef]
  29. K. Mattsson, “Low photo darkening single mode RMO fiber,” Opt. Express 17, 17855–17861 (2009). [CrossRef] [PubMed]
  30. J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006). [CrossRef]
  31. J. Stone and J. Knight, “Visibly white light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008). [CrossRef] [PubMed]
  32. A. Gorbach and D. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007). [CrossRef]
  33. P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited