OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 14892–14902

Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation

Ryan A. Integlia, Lianghong Yin, Duo Ding, David Z. Pan, Douglas M. Gill, and Wei Jiang  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 14892-14902 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1082 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A parallel-coupled dual racetrack silicon micro-resonator structure is proposed and analyzed for M-ary quadrature amplitude modulation. The over-coupled, critically coupled, and under-coupled scenarios are systematically studied. Simulations indicate that only the over-coupled structures can generate arbitrary M-ary quadrature signals. Analytic study shows that the large dynamic range of amplitude and phase of a modulated over-coupled structure stems from the strong cross-coupling between two resonators, which can be understood through a delicate balance between the direct sum and the “interaction” terms. Potential asymmetries in the coupling constants and quality factors of the resonators are systematically studied. Compensations for these asymmetries by phase adjustment are shown feasible.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.4110) Optical devices : Modulators
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: March 28, 2011
Revised Manuscript: June 14, 2011
Manuscript Accepted: June 15, 2011
Published: July 19, 2011

Ryan A. Integlia, Lianghong Yin, Duo Ding, David Z. Pan, Douglas M. Gill, and Wei Jiang, "Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation," Opt. Express 19, 14892-14902 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006). [CrossRef]
  2. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, 1997).
  3. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  4. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006). [CrossRef]
  5. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  6. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  7. C. Li, L. J. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express 15(8), 5069–5076 (2007). [CrossRef] [PubMed]
  8. Y. C. Li, L. Zhang, M. P. Song, B. Zhang, J. Y. Yang, R. G. Beausoleil, A. E. Willner, and P. D. Dapkus, “Coupled-ring-resonator-based silicon modulator for enhanced performance,” Opt. Express 16(17), 13342–13348 (2008). [CrossRef] [PubMed]
  9. D. M. Gill, M. Rasras, K. Y. Tu, Y. K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal Bandwidth Equalization in a CMOS-Compatible Si-Ring Modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009). [CrossRef]
  10. D. M. Gill, S. S. Patel, M. Rasras, K. Y. Tu, A. E. White, Y. K. Chen, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-compatible si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 45–52 (2010). [CrossRef]
  11. L. Zhang, J. Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, and A. E. Willner, “Microring-based modulation and demodulation of DPSK signal,” Opt. Express 15(18), 11564–11569 (2007). [CrossRef] [PubMed]
  12. L. Zhang, J. Y. Yang, Y. C. Li, M. P. Song, R. G. Beausoleil, and A. E. Willner, “Monolithic modulator and demodulator of differential quadrature phase-shift keying signals based on silicon microrings,” Opt. Lett. 33(13), 1428–1430 (2008). [CrossRef] [PubMed]
  13. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Optical modulation using anti-crossing between paired amplitude and phase resonators,” Opt. Express 15(25), 17264–17272 (2007). [CrossRef] [PubMed]
  14. W. D. Sacher and J. K. S. Poon, “Microring quadrature modulators,” Opt. Lett. 34(24), 3878–3880 (2009). [CrossRef] [PubMed]
  15. L. L. Gu, W. Jiang, X. N. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90(7), 071105 (2007). [CrossRef]
  16. X. N. Chen, Y. S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, “Capacitor-embedded 0.54 pJ/bit silicon-slot photonic crystal waveguide modulator,” Opt. Lett. 34(5), 602–604 (2009). [CrossRef] [PubMed]
  17. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  18. V. A. Mashkov and H. Temkin, “Propagation of eigenmodes and transfer amplitudes in optical waveguide structures,” IEEE J. Quantum Electron. 34(10), 2036–2047 (1998). [CrossRef]
  19. A. Hardy and W. Streifer, “Coupled modes of multiwaveguide systems and phased arrays,” J. Lightwave Technol. 4(1), 90–99 (1986). [CrossRef]
  20. C.-M. Kim and Y.-J. Im, “Switching operations of three-waveguide optical switches,” IEEE J. Sel. Top. Quantum Electron. 6(1), 170–174 (2000). [CrossRef]
  21. W. Jiang and R. T. Chen, “Multichannel optical add-drop processes in symmetrical waveguide-resonator systems,” Phys. Rev. Lett. 91(21), 213901 (2003). [CrossRef] [PubMed]
  22. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002). [CrossRef]
  23. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010). [CrossRef]
  24. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010). [CrossRef]
  25. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18(23), 23598–23607 (2010). [CrossRef] [PubMed]
  26. B. Razavi, Principles of Data Conversion System Design (Wiley-IEEE Press, 1994).
  27. N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuit and Systems Perspective (Addison-Wesley, 2010).
  28. W. Jiang, L. Gu, X. Chen, and R. T. Chen, “Photonic crystal waveguide modulators for silicon photonics: device physics and some recent progress,” Solid-State Electron. 51(10), 1278–1286 (2007). [CrossRef]
  29. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited