OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 14913–14918

Optical attenuation in ion-implanted silicon waveguide racetrack resonators

J. K. Doylend, P. E. Jessop, and A. P. Knights  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 14913-14918 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1076 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical absorption at wavelengths near 1550 nm has been quantified as a function of annealing temperature in ion-implanted silicon-on-insulator racetrack resonators. The variation of the output characteristics of the bus waveguide versus the concentration of implantation-induced lattice disorder in the ring is used to develop a novel method for the determination of the coupling and round-trip loss of the resonator, independently. This experimental procedure has general applicability for the determination of these parameters. Significant propagation loss is found to persist following annealing at temperatures previously observed to remove the majority of ion implantation damage. It is suggested that these annealing characteristics are a consequence of an ion implantation range which is greater than the silicon waveguide layer thickness.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

Original Manuscript: April 13, 2011
Revised Manuscript: June 22, 2011
Manuscript Accepted: June 24, 2011
Published: July 19, 2011

J. K. Doylend, P. E. Jessop, and A. P. Knights, "Optical attenuation in ion-implanted silicon waveguide racetrack resonators," Opt. Express 19, 14913-14918 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Knights, A. House, R. MacNaughton, and F. Hopper, “Optical power monitoring function compatible with single chip integration on silicon-on-insulator,”in Proc. Optical Fiber Communications Conference, Atlanta, GA, 23–38 March 2003 (OFC2003), p. 705.
  2. J. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005). [CrossRef]
  3. N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” Opt. Express 16(24), 19779–19784 (2008). [CrossRef] [PubMed]
  4. J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010). [CrossRef]
  5. H. Y. Fan and A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127 (1959). [CrossRef]
  6. L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, “1.8-, 3.3-, and 3.9μm bands in irradiated silicon:correlations with the divacancy,” Phys. Rev. 152(2), 761–774 (1966). [CrossRef]
  7. H. J. Stein, F. L. Vook, and J. A. Borders, “Direct evidence of divacancy formation in silicon by ion implantation,” Appl. Phys. Lett. 14(10), 328 (1969). [CrossRef]
  8. S. Libertino, J. L. Benton, D. C. Jacobson, D. J. Eaglesham, J. M. Poate, S. Coffa, P. Kringho̸j, P. G. Fuochi, and M. Lavalle, “Evolution of interstitial- and vacancy-type defects upon thermal annealing in ion-implanted Si,” Appl. Phys. Lett. 71(3), 389 (1997). [CrossRef]
  9. P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006). [CrossRef]
  10. J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010). [CrossRef] [PubMed]
  11. http://www.epixfab.eu
  12. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, (1985).
  13. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002). [CrossRef]
  14. P. G. Coleman, C. P. Burrows, and A. P. Knights, “Simple expression for vacancy concentrations at half ion range following MeV ion implantation of silicon,” Appl. Phys. Lett. 80(6), 947 (2002). [CrossRef]
  15. A. J. Smith, R. M. Gwilliam, V. Stolojan, A. P. Knights, P. G. Coleman, A. Kallis, and S. H. Yeong, “Enhancement of phosphorus activation in vacancy engineered thin silicon-on-insulator substrates,” J. Appl. Phys. 106(10), 103514 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited