OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 14990–14998

Enhanced bandwidth and reduced dispersion through stacking multiple optical metamaterials

Matthew D. Escarra, Sukosin Thongrattanasiri, William O. Charles, Anthony J. Hoffman, Viktor A. Podolskiy, and Claire Gmachl  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 14990-14998 (2011)
http://dx.doi.org/10.1364/OE.19.014990


View Full Text Article

Enhanced HTML    Acrobat PDF (1235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

All-semiconductor, highly anisotropic metamaterials provide a straightforward path to negative refraction in the mid-infrared. However, their usefulness in applications is restricted by strong frequency dispersion and limited spectral bandwidth. In this work, we show that by stacking multiple metamaterials of varying thickness and doping into one compound metamaterial, bandwidth is increased by 27% over a single-stack metamaterial, and dispersion is reduced.

© 2011 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.6000) Materials : Semiconductor materials
(160.3918) Materials : Metamaterials
(310.4165) Thin films : Multilayer design

ToC Category:
Metamaterials

History
Original Manuscript: May 16, 2011
Revised Manuscript: July 6, 2011
Manuscript Accepted: July 6, 2011
Published: July 20, 2011

Citation
Matthew D. Escarra, Sukosin Thongrattanasiri, William O. Charles, Anthony J. Hoffman, Viktor A. Podolskiy, and Claire Gmachl, "Enhanced bandwidth and reduced dispersion through stacking multiple optical metamaterials," Opt. Express 19, 14990-14998 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-14990


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  2. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010). [CrossRef]
  3. A. J. Hoffman, V. A. Podolskiy, D. L. Sivco, and C. Gmachl, “Sub-diffraction negative and positive index modes in mid-infrared waveguides,” Opt. Express 16(21), 16404–16409 (2008). [CrossRef] [PubMed]
  4. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef] [PubMed]
  5. Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt. 13(2), 024002 (2011). [CrossRef]
  6. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006). [CrossRef] [PubMed]
  7. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007). [CrossRef] [PubMed]
  8. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010). [CrossRef] [PubMed]
  9. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71(20), 201101 (2005). [CrossRef]
  10. A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. W. Cheng, F. S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009). [CrossRef]
  11. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  12. L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express 14(23), 11184–11193 (2006). [CrossRef] [PubMed]
  13. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).
  14. D. W. Berreman, “Optics in stratified and anisotropic media: 4x4-matrix formulation,” J. Opt. Soc. Am. 62(4), 502–510 (1972). [CrossRef]
  15. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland Pub. Co., 1977).
  16. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977). [CrossRef]
  17. M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B Condens. Matter 53(8), 4265–4274 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited